mport java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.jobcontrol.ControlledJob;
import org.apache.hadoop.mapreduce.lib.jobcontrol.JobControl;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class Driver {

public static class TokenizerMapper extends
            Mapper<Object, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                context.write(word, one);
            }
        }
    }

public static class IntSumReducer extends
            Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

public static class DependenceMapper extends
            Mapper<Object, Text, Text, Text> {
        private Text word = new Text();
        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String []sep=value.toString().split("\t");
            word.set(sep[1]+"\t"+sep[0]);
            System.out.println(value.toString());
            context.write(word,new Text(""));
        }
    }

public static class DependenceReducer extends
            Reducer<Text,Text,Text,Text> {
        public void reduce(Text key, Iterable<Text> values,
                Context context) throws IOException, InterruptedException {
            String[] sep = key.toString().split("\t");
            System.out.println( sep[0]+"++++++++="+ sep[1]);
            context.write(key,new Text(""));
        }
    }

public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args)
                .getRemainingArgs();
        if (otherArgs.length < 2) {
            System.err.println("Usage: wordcount <in> <out>");
            System.exit(2);
        }
        Job job = new Job(conf, "word count");
        //加入控制容器
        ControlledJob ctrljob1=new  ControlledJob(conf);
        ctrljob1.setJob(job);
        job.setJarByClass(Driver.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
//        job.waitForCompletion(true);

Configuration conf2 = new Configuration();
        Job job2 = new Job(conf2, "word count1");
         ControlledJob ctrljob2=new ControlledJob(conf);
            ctrljob2.setJob(job2);
            ctrljob2.addDependingJob(ctrljob1);
        job2.setJarByClass(Driver.class);
        job2.setMapperClass(DependenceMapper.class);
        job2.setReducerClass(DependenceReducer.class);
        job2.setOutputKeyClass(Text.class);
        job2.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job2, new Path(otherArgs[1]));
        FileOutputFormat.setOutputPath(job2, new Path(otherArgs[2]));
    //    job2.waitForCompletion(true);
          JobControl jobCtrl=new JobControl("myctrl");
          
            //添加到总的JobControl里,进行控制
            jobCtrl.addJob(ctrljob1);
            jobCtrl.addJob(ctrljob2);
            jobCtrl.run();
            
    }
}

mapreduce 依赖组合的更多相关文章

  1. Python 入门 之 类的三大关系(依赖 / 组合/ 继承关系)

    Python 入门 之 类的三大关系(依赖 / 组合/ 继承关系) 在面向对象的中,类与类之间存在三种关系:依赖关系.组合关系.继承关系. 1.依赖关系:将一个类的类名或对象当做参数传递给另一个函数被 ...

  2. mapreduce 顺序组合

    import java.io.IOException;import java.util.StringTokenizer; import org.apache.hadoop.conf.Configura ...

  3. 8、Situation-Dependent Combination of Long-Term and Session-Based Preferences in Group Recommendations: An Experimental Analysis ----组推荐中基于长期和会话偏好的情景依赖组合

    一.摘要: 背景:会话组推荐系统的一个主要挑战是如何适当地利用群组成员之间的交互引起用户偏好,这可能会偏离用户的长期偏好.长期偏好和群组诱导的偏好之间的相对重要性应该根据具体的群组设置而变化. 本文: ...

  4. Hadoop官方文档翻译——MapReduce Tutorial

    MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...

  5. [大牛翻译系列]Hadoop(5)MapReduce 排序:次排序(Secondary sort)

    4.2 排序(SORT) 在MapReduce中,排序的目的有两个: MapReduce可以通过排序将Map输出的键分组.然后每组键调用一次reduce. 在某些需要排序的特定场景中,用户可以将作业( ...

  6. 【原创】MapReduce编程系列之二元排序

    普通排序实现 普通排序的实现利用了按姓名的排序,调用了默认的对key的HashPartition函数来实现数据的分组.partition操作之后写入磁盘时会对数据进行排序操作(对一个分区内的数据作排序 ...

  7. Mapreduce执行过程分析(基于Hadoop2.4)——(一)

    1 概述 该瞅瞅MapReduce的内部运行原理了,以前只知道个皮毛,再不搞搞,不然怎么死的都不晓得.下文会以2.4版本中的WordCount这个经典例子作为分析的切入点,一步步来看里面到底是个什么情 ...

  8. 大数据技术 —— MapReduce 简介

    本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在 ...

  9. Mapreduce运行过程分析(基于Hadoop2.4)——(一)

    1 概述 该瞅瞅MapReduce的内部执行原理了,曾经仅仅知道个皮毛,再不搞搞,不然怎么死的都不晓得.下文会以2.4版本号中的WordCount这个经典样例作为分析的切入点.一步步来看里面究竟是个什 ...

随机推荐

  1. NOIP2002-普及组复赛-第三题-选数

    题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整 ...

  2. [Jmeter]jemeter启动报错,返回错误码 5,处理方法

    今天在使用jmeter的时候,启动GUI,发现bat文件执行有告警,告警内容如下: java.util.prefs.WindowsPreferences <init>WARNING: Co ...

  3. Android Lights

    Android Lights 很多Android手机上都配有LED灯,手机在充电.新来短信等时候都会有相应的指示灯提示. Android系统之中,一共定义了8个逻辑灯,包含:背光,键盘灯,按键灯,充电 ...

  4. iOS页面间传值的六种方式

    一般ios页面间的传值方式分为6种:1.属性传值:2.block:3.delegate:4.UserDefault:5.单例:6.通知. 0&1.block 先说我最常用的block吧,属性传 ...

  5. 证明:一个整数a若不能被6整除,则a2+24必能被24整除。(整除理论,1.1.4)

    证明:一个整数a若不能被6整除,则a2+24必能被24整除. 证明: 因为,a不能被6整除 所以,a不可以同时被2和3整除 所以,a一定是一个奇数, 所以,令a=2k+1,k是整数: 又因为,a2+2 ...

  6. NYOJ-1036 非洲小孩(贪心)

    非洲小孩 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 家住非洲的小孩,都很黑.为什么呢?第一,他们地处热带,太阳辐射严重.第二,他们不经常洗澡.(常年缺水,怎么洗 ...

  7. linux之ls -l|grep "^-"|wc -l命令

    查看某文件夹下文件的个数 ls -l |grep "^-"|wc -l 或 find ./company -type f | wc -l 查看某文件夹下文件的个数,包括子文件夹里的 ...

  8. MS13-069(CVE-2013-3205) CCaret use-after-free Vulnerability Analysis (2014.9)

    MS13-069(CVE-2013-3205) CCaret use-after-free Vulnerability Analysis 1. Introduction In IE's standar ...

  9. jmeter3 测试soap协议-webservice接口

    1.新建一个线程组 2.在线程组下新增,SOAP请求 3.设置soap请求,然后就可以测试了

  10. 十五、oracle 约束

    一.维护数据的完整性数据的完整性用于确保数据库数据遵从一定的商业和逻辑规则,在oracle中,数据完整性可以使用约束.触发器.应用程序(过程.函数)三种方法来实现,在这三种方法中,因为约束易于维护,并 ...