LINK:九个太阳

不可做系列.

构造比较神仙.

考虑FFT的求和原理有 \(\frac{1}{k}\sum_{j=0}^{k-1}(w_k^j)^n=[k|n]\)

带入这道题的式子.

有\(\sum_{i=0}^n\frac{1}{k}\sum_{j=0}^{k-1}(w_k^j)^iC(n,i)\)

颠倒求和符号 二项式定理合并即可klogn求.

k次单位根在mod 998244353时就是 \(\frac{mod-1}{k}\)

code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define inf 100000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE ll i=p;i<=n;++i)
#define go(x) for(ll i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE ll i=n;i>=p;--i)
#define vep(p,n,i) for(RE ll i=p;i<n;++i)
#define pii pair<ll,ll>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-10
#define sq sqrt
#define S second
#define F first
#define mod 998244353
#define id(i,j) ((i-1)*m+j)
#define max(x,y) ((x)<(y)?y:x)
#define a(i) t[i].a
#define b(i) t[i].b
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline ll read()
{
RE ll x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;
}
//我心裏住着一位天使 我怎能可以讓她沒有翅膀?
const ll G=3;
ll n,k;
inline ll ksm(ll b,ll p)
{
ll cnt=1;p=p%(mod-1);
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
p=p>>1;b=(ll)b*b%mod;
}
return cnt;
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(k);
ll ans=0;
ll wn=ksm(G,(mod-1)/k),cc=1;
rep(0,k-1,i)
{
ans=(ans+ksm(cc+1,n))%mod;
cc=(ll)cc*wn%mod;
}
put(ans*(ll)ksm(k,mod-2)%mod);
return 0;
}

loj #6247. 九个太阳 k次单位根 神仙构造 FFT求和原理的更多相关文章

  1. loj #6247. 九个太阳

    求 $\sum\limits_{i=1}^n [k | i] \times C_n^i$ 膜 $998244353$ $n \leq 10^{15},k \leq 2^{20}$ $k$ 是 $2$ ...

  2. [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树

    [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...

  3. 【LOJ#6485】LJJ 学二项式定理(单位根反演)

    [LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...

  4. //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和

    //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和 # include<stdio.h> void main() { ,sum1; ]={,- ...

  5. [LOJ #2473] [九省联考2018] 秘密袭击coat

    题目链接 洛谷. LOJ,LOJ机子是真的快 Solution 我直接上暴力了...\(O(n^2k)\)洛谷要\(O2\)才能过...loj平均单点一秒... 直接枚举每个点为第\(k\)大的点,然 ...

  6. [LOJ] 分块九题 2

    https://loj.ac/problem/6278 区间修改,查询区间第k大. 块内有序(另存),块内二分. 还是用vector吧,数组拷贝排序,下标搞不来.. //Stay foolish,st ...

  7. LOJ 3058 「HNOI2019」白兔之舞——单位根反演+MTT

    题目:https://loj.ac/problem/3058 先考虑 n=1 怎么做.令 a 表示输入的 w[1][1] . \( ans_t = \sum\limits_{i=0}^{L}C_{L} ...

  8. loj6247 九个太阳

    题意: k<=2^20,n<=10^15. 标程: #include<cstdio> using namespace std; typedef long long ll; ; ...

  9. [LOJ] 分块九题 4

    https://loj.ac/problem/6280 区间修改,区间求和. 本来线段树的活. //Stay foolish,stay hungry,stay young,stay simple #i ...

随机推荐

  1. 「MoreThanJava」Day 3:构建程序逻辑的方法

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  2. HTML5(六)表单合集

    HTML5 表单元素 HTML5 新的表单元素 HTML5 有以下新的表单元素: datalist keygen output HTML5 datalist 元素 <datalist> 元 ...

  3. postman-3-请求

    请求头 单击Headers选项卡将显示请求头键-值编辑器.我们可以将任何字符串设置为请求头名称.在输入字段时,自动完成下拉菜单将补充常见HTTP请求头. Content-Type标题的值也可从自动完成 ...

  4. Windows 最值得推荐的装机必备“神器”软件大合集

    工欲善其事,必先利其器.每个人在平时使用电脑的过程中,多多少少都会积累一些好用的软件,我也不例外,从业这么多年,收藏了许多不错的软件,通过这篇文章都分享给大家.如果觉得不错,请把这篇文章分享给你的小伙 ...

  5. 我终于弄懂了Python的装饰器(二)

    此系列文档: 1. 我终于弄懂了Python的装饰器(一) 2. 我终于弄懂了Python的装饰器(二) 3. 我终于弄懂了Python的装饰器(三) 4. 我终于弄懂了Python的装饰器(四) 二 ...

  6. 2018年BRATS 肿瘤分割挑战赛第三名分割方案One-pass Multi-task Networks with Cross-task Guided Attention for Brain Tumor Segmentation

    首先说一下我对这个方案的看法,相比第一名与第二名的方案,这个方案的分割方法确实复杂的多,原论文是发表在MICCAI,后来砖投到IEEE image processing(SCI 1区),总体感觉给人一 ...

  7. scrapy(四): 爬取二级页面的内容

    scrapy爬取二级页面的内容 1.定义数据结构item.py文件 # -*- coding: utf-8 -*- ''' field: item.py ''' # Define here the m ...

  8. scala 数据结构(八 ):-map映射操作

    在Scala中可以通过map映射操作来解决: 将集合中的每一个元素通过指定功能(函数)映射(转换)成新的结果集合这里其实就是所谓的将函数作为参数传递给另外一个函数,这是函数式编程的特点 以HashSe ...

  9. JVM 专题十四:本地方法接口

    1. 本地方法接口 2. 什么是本地方法? 简单来讲,一个Native Method就是一个Java调用非Java代码的接口.一个Native Method是这样一个java方法:该方法的实现由非Ja ...

  10. Kafka 是如何管理消费位点的?

    Kafka 是一个高度可扩展的分布式消息系统,在实时事件流和流式处理为中心的架构越来越风靡的今天,它扮演了这个架构中核心存储的角色.从某种角度说,Kafka 可以看成实时版的 Hadoop 系统.Ha ...