loj #6247. 九个太阳 k次单位根 神仙构造 FFT求和原理
LINK:九个太阳
不可做系列.
构造比较神仙.
考虑FFT的求和原理有 \(\frac{1}{k}\sum_{j=0}^{k-1}(w_k^j)^n=[k|n]\)
带入这道题的式子.
有\(\sum_{i=0}^n\frac{1}{k}\sum_{j=0}^{k-1}(w_k^j)^iC(n,i)\)
颠倒求和符号 二项式定理合并即可klogn求.
k次单位根在mod 998244353时就是 \(\frac{mod-1}{k}\)
code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define inf 100000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE ll i=p;i<=n;++i)
#define go(x) for(ll i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE ll i=n;i>=p;--i)
#define vep(p,n,i) for(RE ll i=p;i<n;++i)
#define pii pair<ll,ll>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-10
#define sq sqrt
#define S second
#define F first
#define mod 998244353
#define id(i,j) ((i-1)*m+j)
#define max(x,y) ((x)<(y)?y:x)
#define a(i) t[i].a
#define b(i) t[i].b
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline ll read()
{
RE ll x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;
}
//我心裏住着一位天使 我怎能可以讓她沒有翅膀?
const ll G=3;
ll n,k;
inline ll ksm(ll b,ll p)
{
ll cnt=1;p=p%(mod-1);
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
p=p>>1;b=(ll)b*b%mod;
}
return cnt;
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(k);
ll ans=0;
ll wn=ksm(G,(mod-1)/k),cc=1;
rep(0,k-1,i)
{
ans=(ans+ksm(cc+1,n))%mod;
cc=(ll)cc*wn%mod;
}
put(ans*(ll)ksm(k,mod-2)%mod);
return 0;
}
loj #6247. 九个太阳 k次单位根 神仙构造 FFT求和原理的更多相关文章
- loj #6247. 九个太阳
求 $\sum\limits_{i=1}^n [k | i] \times C_n^i$ 膜 $998244353$ $n \leq 10^{15},k \leq 2^{20}$ $k$ 是 $2$ ...
- [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树
[BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和
//给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和 # include<stdio.h> void main() { ,sum1; ]={,- ...
- [LOJ #2473] [九省联考2018] 秘密袭击coat
题目链接 洛谷. LOJ,LOJ机子是真的快 Solution 我直接上暴力了...\(O(n^2k)\)洛谷要\(O2\)才能过...loj平均单点一秒... 直接枚举每个点为第\(k\)大的点,然 ...
- [LOJ] 分块九题 2
https://loj.ac/problem/6278 区间修改,查询区间第k大. 块内有序(另存),块内二分. 还是用vector吧,数组拷贝排序,下标搞不来.. //Stay foolish,st ...
- LOJ 3058 「HNOI2019」白兔之舞——单位根反演+MTT
题目:https://loj.ac/problem/3058 先考虑 n=1 怎么做.令 a 表示输入的 w[1][1] . \( ans_t = \sum\limits_{i=0}^{L}C_{L} ...
- loj6247 九个太阳
题意: k<=2^20,n<=10^15. 标程: #include<cstdio> using namespace std; typedef long long ll; ; ...
- [LOJ] 分块九题 4
https://loj.ac/problem/6280 区间修改,区间求和. 本来线段树的活. //Stay foolish,stay hungry,stay young,stay simple #i ...
随机推荐
- 面向对象之继承以及抽象(Java实现)
回顾封装 关于面向对象三大特性,我们可以很自信的回答:封装.继承.多态 之前学习的封装,可以很直观的理解为了保护数据,我们在idea中可以用alt+insert进行一个选择 constructer构造 ...
- 转载--未看关于移动端Web远程开发调试
移动端Web开发调试之Chrome远程调试(Remote Debugging) http://blog.csdn.net/freshlover/article/details/42528643 移动端 ...
- 代码文件编码unicode 无标签, 导入vs项目编译不过的问题
很多人经常需要把代码分别在linux.windows上编译.在linux中gcc编译的时候,文件格式为utf-8无bom格式,可是如果将文件拿到windows上,用vs编译的时候,发现各种报错,且都是 ...
- Jetbranis学习资料之全家桶
相信很多小伙伴,用的代码编辑器很多都是Jetbrains的,但好东西不可能免费的,而且找了很多激活码都是失效总是莫名其妙的就过期了.下面分享一个不错的激活码地址,比其他的应该更加可靠.本人实测目前支持 ...
- Python3笔记027 - 6.2 参数传递
第6章 函数 6.2 参数传递 在理解形参和实参的基础上,理解位置参数.关键字参数.可变参数这三种情形,以及这三种的混合情形. 6.2.1 形式参数和实际参数 形式参数:在定义函数时,函数名后面括号中 ...
- celery 基础教程(二):简单实例
前言 使用celery包含三个方面:1. 定义任务函数.2. 运行celery服务.3. 客户应用程序的调用. 实例一: #1. 定义任务函数 创建一个文件 tasks.py输入下列代码: from ...
- scrapy 源码解析 (四):启动流程源码分析(四) Scheduler调度器
Scheduler调度器 对ExecutionEngine执行引擎篇出现的Scheduler进行展开.Scheduler用于控制Request对象的存储和获取,并提供了过滤重复Request的功能. ...
- python之爬虫(八)BeautifulSoup库的使用
上一篇文章的正则,其实对很多人来说用起来是不方便的,加上需要记很多规则,所以用起来不是特别熟练,而这节我们提到的beautifulsoup就是一个非常强大的工具,爬虫利器. beautifulSoup ...
- mysql语句批量产生大量测试数据
CREATE TABLE `t_user` ( `id` bigint(20) NOT NULL AUTO_INCREMENT, `name` varchar(255) DEFAULT NULL, ` ...
- 洛谷 P5022 旅行
今天换标题格式了,因为感觉原版实在有点别扭…… 还是直接上题板,看完题再讲吧: 对了有个小细节没说,m一定是等于n或者等于n-1的. 这题是2018年提高组的真题哦!被我肝了2天肝出来了,2天……(真 ...