NOIP2001 一元三次方程求解[导数+牛顿迭代法]
题目描述
有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。
提示:记方程f(x)=0,若存在2个数x1和x2,且x1<x2,f(x1)*f(x2)<0,则在(x1,x2)之间一定有一个根。
输入输出格式
输入格式:
一行,4个实数A,B,C,D。
输出格式:
一行,三个实根,并精确到小数点后2位。
输入输出样例
1 -5 -4 20
-2.00 2.00 5.00
数据规模太小,可以随便暴力 但为了证明我这几天微积分没白学,用一个高级的方法
首先 f(x)=ax3+bx2+cx+d 求导得到 df/dx=3ax2+2bx+c
求这个导数的零点(就是二次函数求根公式了)得到f(x)的最值点
最值点组成的三个区间一定各有一个f(x)零点,使用牛顿迭代法求得这个零点即可
牛顿迭代法就是不停的用一个点的切线拟合曲线,那个点的导数就是切线斜率 依次类推,可以得到求高次函数零点的一种迭代法:
求n次函数零点,需要极值点来划分区间,也就需要求其导数(n-1次函数)的零点,依次迭代到n=2直接通过公式(当然n=3或4也可以)
最后的复杂度依赖于求零点算法的复杂读
貌似没有人发表过,那么就叫Candy迭代法吧
不过这和三分法求极值相比有优势吗?
//
// main.cpp
// 一元三次方程
//
// Created by Candy on 2016/12/10.
// Copyright © 2016年 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const double eps=1e-;
double a,b,c,d;
inline double f(double x){return ((a*x+b)*x+c)*x+d;}
inline double df(double x){return (*a*x+*b)*x+c;}
double sol(double l,double r){//printf("sol %lf %lf\n",l,r);
int step=;double x=(l+r)/;
while(step--){
x=x-f(x)/df(x);
}
return x;
}
int main(int argc, const char * argv[]) {
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
double p1=(-sqrt(b*b-*a*c)-b)/(*a),
p2=(+sqrt(b*b-*a*c)-b)/(*a);
printf("%.2f %.2f %.2f\n",sol(-,p1),sol(p1,p2),sol(p2,));
return ;
}
NOIP2001 一元三次方程求解[导数+牛顿迭代法]的更多相关文章
- NOIP2001 一元三次方程求解
题一 一元三次方程求解(20分) 问题描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范 ...
- [P1034][NOIP2001]一元三次方程求解 (二分)
二分 #include<bits/stdc++.h> using namespace std; double a,b,c,d; double fc(double x) { )+b*pow( ...
- Codevs 1038 一元三次方程求解 NOIP 2001(导数 牛顿迭代)
1038 一元三次方程求解 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 有形如:ax3+b ...
- Vijos P1116 一元三次方程求解【多解,暴力,二分】
一元三次方程求解 描述 有形如:ax^3+bx^2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之 ...
- [NOIP提高&洛谷P1024]一元三次方程求解 题解(二分答案)
[NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约 ...
- 洛谷——P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- P1024 一元三次方程求解
P1024 一元三次方程求解 #include<cstdio> #include<iostream> #include<algorithm> using names ...
- 洛谷P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- P1024 [NOIP2001 提高组] 一元三次方程求解
题目描述 有形如:a x^3 + b x^2 + c x + d = 0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在 -100至 ...
随机推荐
- Asp.NET MVC 使用 SignalR 实现推送功能一(Hubs 在线聊天室)
简介 ASP .NET SignalR 是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现实时通信.什么是实时通信的Web呢?就是让客户端(Web页面)和服务器端 ...
- Oracle学习总结_day05_集合_连接查询
本文为博主辛苦总结,希望自己以后返回来看的时候理解更深刻,也希望可以起到帮助初学者的作用. 转载请注明 出自 : luogg的博客园 谢谢配合! day05_集合_连接查询 集合操作符 UNION ( ...
- C++笔记 之 基础回顾(一)
1 exe 程序
- Singleton(单例模式)
一. /** * lazy man(不是线程安全的) * @author TMAC-J * */ public class Singleton { private static Singleton i ...
- Lind.DDD.Utils.HttpHelper里静态对象引出的Http超时问题
回到目录 Lind.DDD.Utils.HttpHelper组件主要实现了对HTTP的各种操作,如Get,Post,Put和Delete,它属于最纯粹的操作,大叔把它封装的目的主要为了实现与API安全 ...
- keleyi菜单0.1.5版本发布了
keleyi菜单是一个让你轻松创建向上弹出菜单的jquery插件. 最新版本0.1.5增加了显示三角形的功能,当一级菜单包含有子菜单时,会在一级菜单的右侧显示一个小三角形.如图所示: 查看例子:htt ...
- 【grunt整合版】30分钟学会使用grunt打包前端代码
grunt 是一套前端自动化工具,一个基于nodeJs的命令行工具,一般用于:① 压缩文件② 合并文件③ 简单语法检查 对于其他用法,我还不太清楚,我们这里简单介绍下grunt的压缩.合并文件,初学, ...
- Objective-C 关键字:retain, assgin, copy, readonly,atomic,nonatomic
声明式属性的使用:声明式属性叫编译期语法 @property(retain,nonatomic)Some *s; @property(参数一,参数二)Some *s; 参数1:retain:修饰引用( ...
- Android开发6:Service的使用(简单音乐播放器的实现)
前言 啦啦啦~各位好久不见啦~博主最近比较忙,而且最近一次实验也是刚刚结束~ 好了不废话了,直接进入我们这次的内容~ 在这篇博文里我们将学习Service(服务)的相关知识,学会使用 Service ...
- K 均值算法(K-means)
K-means算法是最简单的一种聚类算法.算法的目的是使各个样本与所在类均值的误差平方和达到最小(这也是评价K-means算法最后聚类效果的评价标准) K-means聚类算法的一般步骤: 1. 初始化 ...