NOIP2001 一元三次方程求解[导数+牛顿迭代法]
题目描述
有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。
提示:记方程f(x)=0,若存在2个数x1和x2,且x1<x2,f(x1)*f(x2)<0,则在(x1,x2)之间一定有一个根。
输入输出格式
输入格式:
一行,4个实数A,B,C,D。
输出格式:
一行,三个实根,并精确到小数点后2位。
输入输出样例
1 -5 -4 20
-2.00 2.00 5.00
数据规模太小,可以随便暴力 但为了证明我这几天微积分没白学,用一个高级的方法
首先 f(x)=ax3+bx2+cx+d 求导得到 df/dx=3ax2+2bx+c
求这个导数的零点(就是二次函数求根公式了)得到f(x)的最值点
最值点组成的三个区间一定各有一个f(x)零点,使用牛顿迭代法求得这个零点即可
牛顿迭代法就是不停的用一个点的切线拟合曲线,那个点的导数就是切线斜率 依次类推,可以得到求高次函数零点的一种迭代法:
求n次函数零点,需要极值点来划分区间,也就需要求其导数(n-1次函数)的零点,依次迭代到n=2直接通过公式(当然n=3或4也可以)
最后的复杂度依赖于求零点算法的复杂读
貌似没有人发表过,那么就叫Candy迭代法吧
不过这和三分法求极值相比有优势吗?
//
// main.cpp
// 一元三次方程
//
// Created by Candy on 2016/12/10.
// Copyright © 2016年 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const double eps=1e-;
double a,b,c,d;
inline double f(double x){return ((a*x+b)*x+c)*x+d;}
inline double df(double x){return (*a*x+*b)*x+c;}
double sol(double l,double r){//printf("sol %lf %lf\n",l,r);
int step=;double x=(l+r)/;
while(step--){
x=x-f(x)/df(x);
}
return x;
}
int main(int argc, const char * argv[]) {
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
double p1=(-sqrt(b*b-*a*c)-b)/(*a),
p2=(+sqrt(b*b-*a*c)-b)/(*a);
printf("%.2f %.2f %.2f\n",sol(-,p1),sol(p1,p2),sol(p2,));
return ;
}
NOIP2001 一元三次方程求解[导数+牛顿迭代法]的更多相关文章
- NOIP2001 一元三次方程求解
题一 一元三次方程求解(20分) 问题描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范 ...
- [P1034][NOIP2001]一元三次方程求解 (二分)
二分 #include<bits/stdc++.h> using namespace std; double a,b,c,d; double fc(double x) { )+b*pow( ...
- Codevs 1038 一元三次方程求解 NOIP 2001(导数 牛顿迭代)
1038 一元三次方程求解 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 有形如:ax3+b ...
- Vijos P1116 一元三次方程求解【多解,暴力,二分】
一元三次方程求解 描述 有形如:ax^3+bx^2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之 ...
- [NOIP提高&洛谷P1024]一元三次方程求解 题解(二分答案)
[NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约 ...
- 洛谷——P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- P1024 一元三次方程求解
P1024 一元三次方程求解 #include<cstdio> #include<iostream> #include<algorithm> using names ...
- 洛谷P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- P1024 [NOIP2001 提高组] 一元三次方程求解
题目描述 有形如:a x^3 + b x^2 + c x + d = 0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在 -100至 ...
随机推荐
- jQuery弹出深色系层菜单
低调奢华jQuery弹出层菜单,使用新版的jQuery库,兼容多种浏览器.Demo展示: http://hovertree.com/texiao/layer/3/ 本特效可以作为网站的引导页,使用jQ ...
- Dumpbin 工具的使用
dumpbin用法:dumpbin /exports /out:d:\mfc90.txt d:\mfc90.lib 在使用VC时,可以用DUMPBIN.EXE来得到某个DLL中所输出的符号的清单.如下 ...
- C# Cache 设定缓存过期时间方法 绝对过期时间 和 相对过期时间(即:访问激活后不过期)
摘自: http://www.cnblogs.com/zj1111184556/p/3493840.html 1. 设定绝对过期时间 /// <summary> /// 设定绝对的过期时间 ...
- js中的等值运算符(抽象相等==与严格相等===的区别)
js中的等值运算符 js中的相等分为抽象相等和严格相等,他们有什么区别呢. 在说具体算法前,先提下JS数据类型,JS数据类型分为6类:Undefined Null String Number Bool ...
- 基础算法(javascipt)总结
一.排序: 1.选择排序: 2.交换排序: 3.插入排序 二.查找: 三.节点遍历: 四.数组去重: 时间复杂度:找出算法中的基本语句->计算基本语句的执行次数的数量级->用大O记号表示算 ...
- javascript 中的location.href 并不是立即执行的,是在所在function 执行完之后执行的。
javascript 中的location.href 并不是立即执行的,是在所在function 执行完之后执行的. 1 function getUrl(tp) { if (tp == 'd') { ...
- JavaScript基本语法(一)
前段时间学习了HTML和CSS,也实战了一些结构较简单的项目.在还没运用到JS的知识时,做出来的效果总觉得少了些什么.虽然总体布局与一些基本的特效,也能用HTML+CSS就能完成.但如今开始进入Jav ...
- SharePoint 2013 图文开发系列之事件接收器
在SharePoint的使用中,我们经常需要在完成一个动作之后,触发一个事件:比如,我们上传一个文档,但是没有标题,我们需要在上传完成之后,触发一个事件把文件名同步到标题,这就需要用到事件接收器. 此 ...
- 利用UICollectionViewFlowLayout的隐式动画实现UICollectionView的layout的动画调整(外加放大指定cell效果)
前几天在gitHub看到个不错的效果,就是DaiExpandCollectionView,效果如图: 所以赶紧下下来源码看看他怎么实现的,打开源码看了半天,发现他没写什么关于动画的代码啊... 经 ...
- CSS3 text-shadow
<!DOCTYPE html > <html > <head> <meta charset="utf-8"> <title&g ...