生成器

利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。

为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。

创建生成器方法1

要创建一个生成器,有很多种方法。第一种方法很简单,只要把一个列表生成式的 [ ] 改成 ( )

>>> L = [x**2 for x in range(5)]
>>> L
[0, 1, 4, 9, 16]
>>> G = (x**2 for x in range(5))
>>> G
<generator object <genexpr> at 0x7fb63d218750>

创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出列表L的每一个元素,而对于生成器G,我们可以按照迭代器的使用方法来使用,即可以通过next()函数、for循环、list()等方法使用。

>>> next(G)
0
>>> next(G)
1
>>> next(G)
4
>>> next(G)
9
>>> next(G)
16
>>> next(G)
Traceback (most recent call last):
File "<pyshell#39>", line 1, in <module>
next(G)
StopIteration >>> G = ( x**2 for x in range(5))
>>> for x in G:
print(x)

创建生成器方法2

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的 for 循环无法实现的时候,还可以用函数来实现。

就像之前提到的斐波那切数列

注意,在用迭代器实现的方式中,我们要借助几个变量(n、current、num1、num2)来保存迭代的状态。现在我们用生成器来实现一下。

>>> def fib(n):
current = 0
num1, num2 = 0, 1
while current < n:
num = num1
num1, num2 = num2, num1 + num2
current += 1
yield num
return '完成' >>> F = fib(5)
>>> next(F)
0
>>> next(F)
1
>>> next(F)
1
>>> next(F)
2
>>> next(F)
3
>>> next(F)
Traceback (most recent call last):
File "<pyshell#80>", line 1, in <module>
next(F)
StopIteration: 完成

在使用生成器实现的方式中,我们将原本在迭代器__next__方法中实现的基本逻辑放到一个函数中来实现,但是将每次迭代返回数值的return换成了yield,此时新定义的函数便不再是函数,而是一个生成器了。

简单来说:只要在def中有yield关键字的 就称为 生成器

 

此时按照调用函数的方式( 案例中为F = fib(5) )使用生成器就不再是执行函数体了,而是会返回一个生成器对象( 案例中为F ),然后就可以按照使用迭代器的方式来使用生成器了。

>>> for n in fib(5):
print(n) 0
1
1
2
3
>>>

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> g = fib(5)
>>> while True:
try:
x = next(g)
print(f"value:{x}")
except StopIteration as e:
print(f"生成器返回值:{e.value}")
break value:0
value:1
value:1
value:2
value:3
生成器返回值:完成

总结

  • 使用了yield关键字的函数不再是函数,而是生成器。(使用了yield的函数就是生成器)
  • yield关键字有两点作用:
    • 保存当前运行状态(断点),然后暂停执行,即将生成器(函数)挂起
    • 将yield关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用
  • 可以使用next()函数让生成器从断点处继续执行,即唤醒生成器(函数)
  • Python3中的生成器可以使用return返回最终运行的返回值,而Python2中的生成器不允许使用return返回一个返回值(即可以使用return从生成器中退出,但return后不能有任何表达式)。

使用send唤醒

我们除了可以使用next()函数来唤醒生成器继续执行外,还可以使用send()函数来唤醒执行。使用send()函数的一个好处是可以在唤醒的同时向断点处传入一个附加数据。

 

例子:执行到yield时,gen函数作用暂时保存,返回i的值; temp接收下次c.send("python"),send发送过来的值,c.next()等价c.send(None)

>>> def gen():
i = 0
while i < 5:
temp = yield i
print(temp)
i += 1

使用send

>>> f = gen()
>>> next(f)
0
>>> f.send('haha')
haha
1
>>> next(f)
None
2
>>> f.send('haha')
haha
3
>>>

python进阶(11)生成器的更多相关文章

  1. python进阶11 正则表达式

    python进阶11 正则表达式 一.概念 #正则表达式主要解决什么问题? #1.判断一个字符串是否匹配给定的格式,判断用户提交的又想的格式是否正确 #2.从一个字符串中按指定格式提取信息,抓取页面中 ...

  2. Python进阶(四)----生成器、列表推导式、生成器推导式、匿名函数和内置函数

    Python进阶(四)----生成器.列表推导式.生成器推导式.匿名函数和内置函数 一丶生成器 本质: ​ 就是迭代器 生成器产生的方式: ​ 1.生成器函数

  3. Python 进阶_生成器 & 生成器表达式

    目录 目录 相关知识点 生成器 生成器 fab 的执行过程 生成器和迭代器的区别 生成器的优势 加强的生成器特性 生成器表达式 生成器表达式样例 小结 相关知识点 Python 进阶_迭代器 & ...

  4. python进阶之生成器

    迭代器 什么叫迭代 可以被for循环的就说明他们是可迭代的,比如:字符串,列表,字典,元祖,们都可以for循环获取里面的数据 下面我们看一个代码: number = 12345 for i in nu ...

  5. Python进阶-VI 生成器函数进阶、生成器表达式、推导式

    一.生成器函数进阶 需求:求取移动平均数 1.应用场景之一,在奥运会气枪射击比赛中,每打完一发都会显示平均环数! def show_avg(): print('你已进入显示移动平均环数系统!') a ...

  6. 十三. Python基础(13)--生成器进阶

    十三. Python基础(13)--生成器进阶 1 ● send()方法 generator.send(value) Resumes the execution, and "sends&qu ...

  7. python开发函数进阶:生成器表达式&各种推导式

    一,生成器表达式 #生成器表达式比列表解析更省内存,因为惰性运算 #!/usr/bin/env python #_*_coding:utf-8_*_ new_2 = (i*i for i in ran ...

  8. Python进阶5---StringIO和BytesIO、路径操作、OS模块、shutil模块

    StringIO StringIO操作 BytesIO BytesIO操作 file-like对象 路径操作 路径操作模块 3.4版本之前:os.path模块 3.4版本开始 建议使用pathlib模 ...

  9. python进阶篇

    python进阶篇 import 导入模块 sys.path:获取指定模块搜索路径的字符串集合,可以将写好的模块放在得到的某个路径下,就可以在程序中import时正确找到. ​ import sys ...

  10. [Book Content]Python进阶

    python进阶 原书内容https://github.com/eastlakeside/interpy-zh 通过记录书本目录和大概内容做一个记录,方便以后回顾检索. Chapter Title B ...

随机推荐

  1. 设计模式(十五)——命令模式(Spring框架的JdbcTemplate源码分析)

    1 智能生活项目需求 看一个具体的需求 1) 我们买了一套智能家电,有照明灯.风扇.冰箱.洗衣机,我们只要在手机上安装 app 就可以控制对这些家电工作. 2) 这些智能家电来自不同的厂家,我们不想针 ...

  2. Java工作中的并发问题处理方法总结

    Java工作中常见的并发问题处理方法总结 好像挺久没有写博客了,趁着这段时间比较闲,特来总结一下在业务系统开发过程中遇到的并发问题及解决办法,希望能帮到大家 问题复现 1. "设备Aの奇怪分 ...

  3. fzu2198 快来快来数一数

    Accept: 204    Submit: 627 Time Limit: 1000 mSec    Memory Limit : 65536 KB  Problem Description n个六 ...

  4. Codeforces Round #656 (Div. 3) A. Three Pairwise Maximums (数学)

    题意:给你三个正整数\(x\),\(y\),\(z\),问能够找到三个正整数\(a\),\(b\),\(c\),使得\(x=max(a,b)\),\(y=max(a,c)\),\(z=max(b,c) ...

  5. centos 7下设置.net core项目开机自启动

    1.在etc/systemd/system下创建xxx.service文件 例如:vi /etc/systemd/system/ubif.service2.编辑 ubif.service内容如下: [ ...

  6. K8S(04)核心插件-coredns服务

    K8S核心插件-coredns服务 目录 K8S核心插件-coredns服务 1 coredns用途 1.1 为什么需要服务发现 2 coredns的部署 2.1 获取coredns的docker镜像 ...

  7. kubernetes实战-交付dubbo服务到k8s集群(四)使用blue ocean流水线构建dubbo-demo-service

    使用jenkins创建一个新的项目:dubbo-demo,选择流水线构建 勾选保存构建历史和指定项目为参数化构建项目: 添加构建参数:以下配置项,是王导根据多年生产经验总结出来的甩锅大法: 除了bas ...

  8. SQL优化汇总

    今天面某家公司,然后问我SQL优化,感觉有点忘了,今天特此总结一下: 总结得是分两方面:索引优化和查询优化: 一. 索引优化: 1. 独立的列 在进行查询时,索引列不能是表达式的一部分,也不能是函数的 ...

  9. canvas绘制五星红旗

    代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8& ...

  10. 51nod1459 带权最短路

    1459 迷宫游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 你来到一个迷宫前.该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分 ...