转载:Python中collections模块
Python中collections模块
这个模块实现了特定目标的容器,以提供Python标准内建容器 dict、list、set、tuple 的替代选择。
- Counter:字典的子类,提供了可哈希对象的计数功能
- defaultdict:字典的子类,提供了一个工厂函数,为字典查询提供了默认值
- OrderedDict:字典的子类,保留了他们被添加的顺序
- namedtuple:创建命名元组子类的工厂函数
- deque:类似列表容器,实现了在两端快速添加(append)和弹出(pop)
- ChainMap:类似字典的容器类,将多个映射集合到一个视图里面
Counter
Counter是一个dict子类,主要是用来对你访问的对象的频率进行计数。
常用方法:
- elements():返回一个迭代器,每个元素重复计算的个数,如果一个元素的计数小于1,就会被忽略。
- most_common([n]):返回一个列表,提供n个访问频率最高的元素和计数
- subtract([iterable-or-mapping]):从迭代对象中减去元素,输入输出可以是0或者负数
- update([iterable-or-mapping]):从迭代对象计数元素或者从另一个 映射对象 (或计数器) 添加。
# 统计字符出现的次数
>>> import collections
>>> collections.Counter('hello world')
Counter({'l': 3, 'o': 2, 'h': 1, 'e': 1, ' ': 1, 'w': 1, 'r': 1, 'd': 1})
# 统计单词数
>>> collections.Counter('hello world hello world hello nihao'.split())
Counter({'hello': 3, 'world': 2, 'nihao': 1})
常用的方法:
>>> c = collections.Counter('hello world hello world hello nihao'.split())
>>> c
Counter({'hello': 3, 'world': 2, 'nihao': 1})
# 获取指定对象的访问次数,也可以使用get()方法
>>> c['hello']
3
>>> c = collections.Counter('hello world hello world hello nihao'.split())
# 查看元素
>>> list(c.elements())
['hello', 'hello', 'hello', 'world', 'world', 'nihao']
# 追加对象,或者使用c.update(d)
>>> c = collections.Counter('hello world hello world hello nihao'.split())
>>> d = collections.Counter('hello world'.split())
>>> c
Counter({'hello': 3, 'world': 2, 'nihao': 1})
>>> d
Counter({'hello': 1, 'world': 1})
>>> c + d
Counter({'hello': 4, 'world': 3, 'nihao': 1})
# 减少对象,或者使用c.subtract(d)
>>> c - d
Counter({'hello': 2, 'world': 1, 'nihao': 1})
# 清除
>>> c.clear()
>>> c
Counter()
defaultdict
collections.defaultdict(default_factory)
为字典的没有的key提供一个默认的值。参数应该是一个函数,当没有参数调用时返回默认值。如果没有传递任何内容,则默认为None。
>>> d = collections.defaultdict()
>>> d
defaultdict(None, {})
>>> e = collections.defaultdict(str)
>>> e
defaultdict(<class 'str'>, {})
defaultdict的一个典型用法是使用其中一种内置类型(如str、int、list或dict)作为默认工厂,因为这些内置类型在没有参数调用时返回空类型。
>>> d = collections.defaultdict(str)
>>> d
defaultdict(<class 'str'>, {})
>>> d['hello']
''
>>> d
defaultdict(<class 'str'>, {'hello': ''})
# 普通字典调用不存在的键时,将会抛异常
>>> e = {}
>>> e['hello']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'hello'
使用int
作为default_factory的例子:
>>> from collections import defaultdict
>>> fruit = defaultdict(int)
>>> fruit['apple'] += 2
>>> fruit
defaultdict(<class 'int'>, {'apple': 2})
>>> fruit
defaultdict(<class 'int'>, {'apple': 2})
>>> fruit['banana'] # 没有对象时,返回0
0
>>> fruit
defaultdict(<class 'int'>, {'apple': 2, 'banana': 0})
使用list
作为default_factory的例子:
>>> s = [('NC', 'Raleigh'), ('VA', 'Richmond'), ('WA', 'Seattle'), ('NC', 'Asheville')]
>>> d = collections.defaultdict(list)
>>> for k,v in s:
... d[k].append(v)
...
>>> d
defaultdict(<class 'list'>, {'NC': ['Raleigh', 'Asheville'], 'VA': ['Richmond'], 'WA': ['Seattle']})
OrderedDict
Python字典中的键的顺序是任意的:它们不受添加的顺序的控制。
collections.OrderedDict
类提供了保留他们添加顺序的字典对象。
>>> from collections import OrderedDict
>>> o = OrderedDict()
>>> o['key1'] = 'value1'
>>> o['key2'] = 'value2'
>>> o['key3'] = 'value3'
>>> o
OrderedDict([('key1', 'value1'), ('key2', 'value2'), ('key3', 'value3')])
如果在已经存在的key上添加新的值,将会保留原来的key的位置,然后覆盖value值。
>>> o['key1'] = 'value5'
>>> o
OrderedDict([('key1', 'value5'), ('key2', 'value2'), ('key3', 'value3')])
namedtuple
三种定义命名元组的方法:第一个参数是命名元组的构造器(如下的:Person,Human)
>>> from collections import namedtuple
>>> Person = namedtuple('Person', ['age', 'height', 'name'])
>>> Human = namedtuple('Human', 'age, height, name')
>>> Human2 = namedtuple('Human2', 'age height name')
实例化命令元组
>>> tom = Person(30,178,'Tom')
>>> jack = Human(20,179,'Jack')
>>> tom
Person(age=30, height=178, name='Tom')
>>> jack
Human(age=20, height=179, name='Jack')
>>> tom.age #直接通过 实例名+.+属性 来调用
30
>>> jack.name
'Jack'
deque
collections.deque
返回一个新的双向队列对象,从左到右初始化(用方法 append()) ,从 iterable (迭代对象) 数据创建。如果 iterable 没有指定,新队列为空。
collections.deque
队列支持线程安全,对于从两端添加(append)或者弹出(pop),复杂度O(1)。
虽然list
对象也支持类似操作,但是这里优化了定长操作(pop(0)、insert(0,v))的开销。
如果 maxlen 没有指定或者是 None ,deques 可以增长到任意长度。否则,deque就限定到指定最大长度。一旦限定长度的deque满了,当新项加入时,同样数量的项就从另一端弹出。
支持的方法:
- append(x):添加x到右端
- appendleft(x):添加x到左端
- clear():清楚所有元素,长度变为0
- copy():创建一份浅拷贝
- count(x):计算队列中个数等于x的元素
- extend(iterable):在队列右侧添加iterable中的元素
- extendleft(iterable):在队列左侧添加iterable中的元素,注:在左侧添加时,iterable参数的顺序将会反过来添加
- index(x[,start[,stop]]):返回第 x 个元素(从 start 开始计算,在 stop 之前)。返回第一个匹配,如果没找到的话,升起 ValueError 。
- insert(i,x):在位置 i 插入 x 。注:如果插入会导致一个限长deque超出长度 maxlen 的话,就升起一个 IndexError 。
- pop():移除最右侧的元素
- popleft():移除最左侧的元素
- remove(value):移去找到的第一个 value。没有抛出ValueError
- reverse():将deque逆序排列。返回 None 。
- maxlen:队列的最大长度,没有限定则为None。
>>> from collections import deque
>>> d = deque(maxlen=10)
>>> d
deque([], maxlen=10)
>>> d.extend('python')
>>> [i.upper() for i in d]
['P', 'Y', 'T', 'H', 'O', 'N']
>>> d.append('e')
>>> d.appendleft('f')
>>> d
deque(['f', 'p', 'y', 't', 'h', 'o', 'n', 'e'], maxlen=10)
ChainMap
一个 ChainMap 将多个字典或者其他映射组合在一起,创建一个单独的可更新的视图。 如果没有 maps 被指定,就提供一个默认的空字典 。ChainMap
是管理嵌套上下文和覆盖的有用工具。
>>> from collections import ChainMap
>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> combined_d = ChainMap(d1,d2)
>>> reverse_combind_d = ChainMap(d2,d1)
>>> combined_d
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> reverse_combind_d
ChainMap({'orange': 2, 'apple': 3, 'pike': 1}, {'apple': 1, 'banana': 2})
>>> for k,v in combined_d.items():
... print(k,v)
...
pike 1
apple 1
banana 2
orange 2
>>> for k,v in reverse_combind_d.items():
... print(k,v)
...
pike 1
apple 3
banana 2
orange 2
转载:Python中collections模块的更多相关文章
- Python中collections模块
目录 Python中collections模块 Counter defaultdict OrderedDict namedtuple deque ChainMap Python中collections ...
- Python中collections模块的使用
本文将详细讲解collections模块中的所有类,和每个类中的方法,从源码和性能的角度剖析. 一个模块主要用来干嘛,有哪些类可以使用,看__init__.py就知道 '''This module i ...
- Python中Collections模块的Counter容器类使用教程
1.collections模块 collections模块自Python 2.4版本开始被引入,包含了dict.set.list.tuple以外的一些特殊的容器类型,分别是: OrderedDict类 ...
- python:collections模块
Counter类 介绍:A counter tool is provided to support convenient and rapid tallies 构造:class collections. ...
- Python的collections模块中namedtuple结构使用示例
namedtuple顾名思义,就是名字+元组的数据结构,下面就来看一下Python的collections模块中namedtuple结构使用示例 namedtuple 就是命名的 tuple,比较 ...
- Python 中包/模块的 `import` 操作
版权声明:博客为作者原创,允许转载,但必须注明原文地址: https://www.cnblogs.com/byronxie/p/10745292.html 用实例来说明 import 的作用吧. 创建 ...
- python 历险记(五)— python 中的模块
目录 前言 基础 模块化程序设计 模块化有哪些好处? 什么是 python 中的模块? 引入模块有几种方式? 模块的查找顺序 模块中包含执行语句的情况 用 dir() 函数来窥探模块 python 的 ...
- Python中的模块(1)
Python中的模块 有过C语言编程经验的朋友都知道在C语言中如果要引用sqrt这个函数,必须用语句"#include<math.h>"引入math.h这个头文件,否则 ...
- Python中logging模块的基本用法
在 PyCon 2018 上,Mario Corchero 介绍了在开发过程中如何更方便轻松地记录日志的流程. 整个演讲的内容包括: 为什么日志记录非常重要 日志记录的流程是怎样的 怎样来进行日志记录 ...
随机推荐
- Jmeter之『JSR223脚本』
Json处理(通过JS) 对于Json字符串,需要使用单引号『''』(因为Json中已存在双引号) // String转为Object var jsonObj = JSON.parse('${data ...
- shiro入门学习--授权(Authorization)|筑基初期
写在前面 经过前面的学习,我们了解了shiro中的认证流程,并且学会了如何通过自定义Realm实现应用程序的用户认证.在这篇文章当中,我们将学习shiro中的授权流程. 授权概述 这里的授权指的是授予 ...
- VueCroppie
下载 VueCroppie VueCroppie是一个Vue 2包装Croppie一个美丽的照片裁剪工具的Javascript由foliotek. 安装 NPM 安装vue-croppie-保存 CD ...
- 腾讯云服务器,使用xshell ssh秘钥登录的时候报错:所选的用户密钥未在远程主机上注册
1.背景 新买了台腾讯云服务器,在腾讯云控制台新建了SSH私钥,然后下载到本地. 在本地使用xshell工具,导入下载好的私钥进行登录,报错:所选的用户密钥未在远程主机上注册 2.解决方案 在确定选择 ...
- TP5调用小程序微信支付,回调,在待支付中再次调用微信支付
1,必须要有 $mch_id $key $appid这三个值,是需要去申请的,我是直接用公司的2,购买商品订单号用户openid统一下单名称商品价格(必须以分为单位,调起微信支付)服务器的ip地址(没 ...
- 面试题____pthon__002(法本_) 阿里
1.描述一下您负责的业务中最复杂的业务(可以从业务是为了解决用户的什么问题切入).这个最复杂的业务中,最复杂的模块是什么,这个模块的主要功能详细描述一下.这个模块,采用了什么样的测试手段保障质量?2. ...
- web自动化测试总结
web自动化: 1.测试用例(操作步骤,熟读需求文档,web项目先用手工研究,前置条件,预期结果) 接口自动化测试中数据功能最适合作为数据驱动,数据放在excel中需要操作excel 为什么web自动 ...
- linux(centos8):zabbix配置邮件报警(监控错误日志)(zabbix5.0)
一,zabbix5.0发邮件报警的准备工作: zabbix5.0在linux平台上的安装:参见这一篇: https://www.cnblogs.com/architectforest/p/129125 ...
- Helium文档6-WebUI自动化-S用于通过id\name\classname\xpth定位元素
前言 S方法可以灵活定位元素特别注意,比如to_left_of参数的使用是查找在某个元素左侧的元素,但是默认只会找第一个S方法可以灵活运用,特别是没有id,没有name,只有classname的情况, ...
- 通俗的讲解Python中的__new__()方法
2020-3-17更新本文,对本文中存争议的例子进行了更新! 曾经我幼稚的以为认识了python的__init__()方法就相当于认识了类构造器,结果,__new__()方法突然出现在我眼前,让我突然 ...