Get Many Persimmon Trees

POJ - 2029

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 
 
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format. 


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T 

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H. 

The end of the input is indicated by a line that solely contains a zero. 

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

————————————————————————————————————————————————————————————

主要是为了练习二维线段树。点修改,区域查询。

用二维线段树写这个题目真的很蠢,随便一个方法都比它好。

————————————————————————————————————————————————————————————

  1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<cmath>
5 #include<algorithm>
6
7 using namespace std;
8 const int maxn=101;
9 struct LIE
10 {
11 int ll,lr,sum;
12 };
13 struct HANG
14 {
15 int hl,hr;
16 LIE lie[maxn<<2];
17 }hang[maxn<<2];
18 int t;
19 int n,m,w,h,ans=0;
20 void readint(int &x)
21 {
22 char c=getchar();
23 int f=1;
24 for(;c<'0' || c>'9';c=getchar())if(c=='-')f=-f;
25 x=0;
26 for(;c<='9'&& c>='0';c=getchar())x=(x<<1)+(x<<3)+c-'0';
27 x*=f;
28 }
29 void writeint(int x)
30 {
31 char s[20];
32 int js=0;
33 if(!x)
34 {
35 s[0]='0';
36 js=1;
37 }
38 else
39 {
40 while(x)
41 {
42 s[js]=x%10+'0';
43 js++;x/=10;
44 }
45 }
46 js--;
47 while(js>=0)putchar(s[js--]);
48 putchar('\n');
49 }
50 void buil(int pre,int cur,int ll,int lr)
51 {
52 hang[pre].lie[cur].ll=ll;hang[pre].lie[cur].lr=lr;
53 hang[pre].lie[cur].sum=0;
54 if(ll==lr)return ;
55 int mid=(ll+lr)>>1;
56 buil(pre,cur<<1,ll,mid);
57 buil(pre,cur<<1|1,mid+1,lr);
58 }
59 void build(int cur,int hl,int hr,int ll,int lr)
60 {
61 hang[cur].hl=hl;hang[cur].hr=hr;
62 buil(cur,1,ll,lr);
63 if(hl==hr)return ;
64 int mid=(hl+hr)>>1;
65 build(cur<<1,hl,mid,ll,lr);
66 build(cur<<1|1,mid+1,hr,ll,lr);
67 }
68 void upda(int pre,int cur,int y)
69 {
70 hang[pre].lie[cur].sum++;
71 if(hang[pre].lie[cur].ll==hang[pre].lie[cur].lr)return;
72 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
73 if(y<=mid)upda(pre,cur<<1,y);
74 else upda(pre,cur<<1|1,y);
75 }
76 void update(int cur,int x,int y)
77 {
78 upda(cur,1,y);
79 if(hang[cur].hl==hang[cur].hr)return;
80 int mid=(hang[cur].hl+hang[cur].hr)>>1;
81 if(x<=mid)update(cur<<1,x,y);
82 else update(cur<<1|1,x,y);
83 }
84 int quer(int pre,int cur,int yl,int yr)
85 {
86 if(yl<=hang[pre].lie[cur].ll && hang[pre].lie[cur].lr<=yr)return hang[pre].lie[cur].sum;
87 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
88 int ans=0;
89 if(yl<=mid)ans+=quer(pre,cur<<1,yl,yr);
90 if(mid<yr)ans+=quer(pre,cur<<1|1,yl,yr);
91 return ans;
92 }
93 int query(int cur,int xl,int xr,int yl,int yr)
94 {
95 if(xl<=hang[cur].hl && hang[cur].hr<=xr)return quer(cur,1,yl,yr);
96 int mid=(hang[cur].hl+hang[cur].hr)>>1;
97 int ans=0;
98 if(xl<=mid)ans+=query(cur<<1,xl,xr,yl,yr);
99 if(xr>mid)ans+=query(cur<<1|1,xl,xr,yl,yr);
100 return ans;
101 }
102 int main()
103 {
104 readint(t);
105 while(t)
106 {
107 readint(n);readint(m);
108 build(1,1,n,1,m);
109 for(int x,y,i=0;i<t;i++)
110 {
111 readint(x);readint(y);
112 update(1,x,y);
113 }
114 readint(w);readint(h);
115 ans=0;
116 for(int i=1;i<=n-w+1;i++)
117 for(int j=1;j<=m-h+1;j++)
118 {
119 ans=max(ans,query(1,i,i+w-1,j,j+h-1));
120 }
121 writeint(ans);
122 readint(t);
123 }
124 return 0;
125 }

POJ2029 二维线段树的更多相关文章

  1. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  2. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  3. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  4. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  5. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  6. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  7. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  8. HDU 4819 Mosaic --二维线段树(树套树)

    题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...

  9. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

随机推荐

  1. Tomcat启动web项目静态页面中文乱码问题解决

    1 首先查看静态页面在编辑器中是否正常,  如果是eclipse ,需要设置一下项目编码格式为utf-8, 如果是idea , 一般会自动识别, 也可以自己手动检查一下, 检查html上面是否有    ...

  2. Screaming Frog SEO Spider页面分析工具使用方法

    一.  下载地址:https://www.screamingfrog.co.uk/seo-spider/ 二.  使用教程 链接1: https://blog.csdn.net/a055350/art ...

  3. element-ui使用后手记

    一.路由模式el-menu中使用路由模式 在el-meun中设置:router="true" 在el-menu-item中设置index="路由地址"

  4. 项目实战--Stream流实现字符串拼接

    需求说明 概述:前端页面查询列表中有个"二级类目"的多选下拉框,用户选择二级类目后,需要从后台数据库查询条件内的数据.  目标:将前端页面传入后端的字符串例如"女性护理, ...

  5. innnodb_doublewrite

    有写场景下,双写缓冲确实没必要,例如,你也许像在备库上禁用双写缓冲,此外,一些文件系统,例如zfs做了同样的事,所以,没必要再让innodb做一遍. innodb_double_write=0 即可关 ...

  6. 摆脱 996——GitHub 热点速览 v.21.03

    作者:HelloGitHub-小鱼干 Twitter 有位程序员总结了本周的 GitHub 中文程序员的看点:国内程序员日常--考公务员.996.抢茅台.刷算法.整健康码.在本期热点速览里,小鱼干收录 ...

  7. 【ORACLE】ASMM和AMM的相关问题

    转自:http://m.blog.itpub.net/31397003/viewspace-2137469/ 关于ASMM和AMM http://blog.itpub.net/29800581/vie ...

  8. 利用容器逃逸实现远程登录k8s集群节点

    某天, 某鱼说要吃瞄, 于是...... 李国宝:边缘计算k8s集群SuperEdge初体验 ​ zhuanlan.zhihu.com 图标 照着上一篇文章来说,我这边边缘计算集群有一堆节点. 每个节 ...

  9. zabbix-server安装部署配置

    zabbix-server安装部署配置 zabbixLinux安装部署安装脚本 1 一步一步部署 1.1 安装zabbix仓库源 这里安装阿里的zabbix仓库地址 选用zabbix版本3.4 rpm ...

  10. 关于java并发场景下,HttpServletRequst中session丢失问题

    使用场景: 在list数据进来之后使用安全数组    Lists.newCopyOnWriteArrayList() 进行了   parallelStream  并行处理,在接口中进行了登录者信息接口 ...