Get Many Persimmon Trees

POJ - 2029

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 
 
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format. 


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T 

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H. 

The end of the input is indicated by a line that solely contains a zero. 

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

————————————————————————————————————————————————————————————

主要是为了练习二维线段树。点修改,区域查询。

用二维线段树写这个题目真的很蠢,随便一个方法都比它好。

————————————————————————————————————————————————————————————

  1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<cmath>
5 #include<algorithm>
6
7 using namespace std;
8 const int maxn=101;
9 struct LIE
10 {
11 int ll,lr,sum;
12 };
13 struct HANG
14 {
15 int hl,hr;
16 LIE lie[maxn<<2];
17 }hang[maxn<<2];
18 int t;
19 int n,m,w,h,ans=0;
20 void readint(int &x)
21 {
22 char c=getchar();
23 int f=1;
24 for(;c<'0' || c>'9';c=getchar())if(c=='-')f=-f;
25 x=0;
26 for(;c<='9'&& c>='0';c=getchar())x=(x<<1)+(x<<3)+c-'0';
27 x*=f;
28 }
29 void writeint(int x)
30 {
31 char s[20];
32 int js=0;
33 if(!x)
34 {
35 s[0]='0';
36 js=1;
37 }
38 else
39 {
40 while(x)
41 {
42 s[js]=x%10+'0';
43 js++;x/=10;
44 }
45 }
46 js--;
47 while(js>=0)putchar(s[js--]);
48 putchar('\n');
49 }
50 void buil(int pre,int cur,int ll,int lr)
51 {
52 hang[pre].lie[cur].ll=ll;hang[pre].lie[cur].lr=lr;
53 hang[pre].lie[cur].sum=0;
54 if(ll==lr)return ;
55 int mid=(ll+lr)>>1;
56 buil(pre,cur<<1,ll,mid);
57 buil(pre,cur<<1|1,mid+1,lr);
58 }
59 void build(int cur,int hl,int hr,int ll,int lr)
60 {
61 hang[cur].hl=hl;hang[cur].hr=hr;
62 buil(cur,1,ll,lr);
63 if(hl==hr)return ;
64 int mid=(hl+hr)>>1;
65 build(cur<<1,hl,mid,ll,lr);
66 build(cur<<1|1,mid+1,hr,ll,lr);
67 }
68 void upda(int pre,int cur,int y)
69 {
70 hang[pre].lie[cur].sum++;
71 if(hang[pre].lie[cur].ll==hang[pre].lie[cur].lr)return;
72 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
73 if(y<=mid)upda(pre,cur<<1,y);
74 else upda(pre,cur<<1|1,y);
75 }
76 void update(int cur,int x,int y)
77 {
78 upda(cur,1,y);
79 if(hang[cur].hl==hang[cur].hr)return;
80 int mid=(hang[cur].hl+hang[cur].hr)>>1;
81 if(x<=mid)update(cur<<1,x,y);
82 else update(cur<<1|1,x,y);
83 }
84 int quer(int pre,int cur,int yl,int yr)
85 {
86 if(yl<=hang[pre].lie[cur].ll && hang[pre].lie[cur].lr<=yr)return hang[pre].lie[cur].sum;
87 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
88 int ans=0;
89 if(yl<=mid)ans+=quer(pre,cur<<1,yl,yr);
90 if(mid<yr)ans+=quer(pre,cur<<1|1,yl,yr);
91 return ans;
92 }
93 int query(int cur,int xl,int xr,int yl,int yr)
94 {
95 if(xl<=hang[cur].hl && hang[cur].hr<=xr)return quer(cur,1,yl,yr);
96 int mid=(hang[cur].hl+hang[cur].hr)>>1;
97 int ans=0;
98 if(xl<=mid)ans+=query(cur<<1,xl,xr,yl,yr);
99 if(xr>mid)ans+=query(cur<<1|1,xl,xr,yl,yr);
100 return ans;
101 }
102 int main()
103 {
104 readint(t);
105 while(t)
106 {
107 readint(n);readint(m);
108 build(1,1,n,1,m);
109 for(int x,y,i=0;i<t;i++)
110 {
111 readint(x);readint(y);
112 update(1,x,y);
113 }
114 readint(w);readint(h);
115 ans=0;
116 for(int i=1;i<=n-w+1;i++)
117 for(int j=1;j<=m-h+1;j++)
118 {
119 ans=max(ans,query(1,i,i+w-1,j,j+h-1));
120 }
121 writeint(ans);
122 readint(t);
123 }
124 return 0;
125 }

POJ2029 二维线段树的更多相关文章

  1. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  2. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  3. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  4. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  5. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  6. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  7. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  8. HDU 4819 Mosaic --二维线段树(树套树)

    题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...

  9. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

随机推荐

  1. SpringBoot文件上传配置

    /** * 文件上传配置 * @return */ @Bean public MultipartConfigElement multipartConfigElement() { MultipartCo ...

  2. wdcp 安装

    lanmp一键安装包是wdlinux官网2010年开始推出的lamp,lnmp,lnamp(apache,nginx,php,mysql,zend,eAccelerator,pureftpd)应用环境 ...

  3. 风炫安全web安全学习第三十节课 命令执行&代码执行基础

    风炫安全web安全学习第三十节课 命令执行&代码执行基础 代码执行&命令执行 RCE漏洞,可以让攻击者直接向后台服务器远程注入操作系统命令或者代码,从而控制后台系统. 远程系统命令执行 ...

  4. 【递归】P5461赦免战俘

    题目相关 原题链接:P5461 赦免战俘 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目背景 借助反作弊系统,一些在月赛有抄袭作弊行为的选手被抓出来了! 题目描述 现有 \(2 ...

  5. php 二位数组 转一维数组

    $result = []; array_map(function ($value) use (&$result) { $result = array_merge($result, array_ ...

  6. JAVA_基础反射创建运行时类的对象

    通过反射去创建对应的运行时类的对象 newInstance():调用此方法,创建对应的运行时类的对象.内部调用的是空参的构造器. 要想此方法正常的创建运行时类的对象,要求: 1.运行时类必须提供空参构 ...

  7. Laya 踩坑日记-人物模型穿模,模型显示不正常

    最近做游戏,人物要跑到很远的位置,z轴距离大概有20000个单位,然后就发现一个bug,到远处人物模型穿了,而且没办法改,这就尴尬了 Z轴对应值    0    100000 100000 当距离零点 ...

  8. LeetCode 二分查找模板 III

    模板 #3: int binarySearch(vector<int>& nums, int target){ if (nums.size() == 0) return -1; i ...

  9. Python基础语法4-运算符

    Python提供了一系列丰富的运算符,包括:  Ø算术运算符  Ø赋值运算符  Ø关系运算符  Ø逻辑运算符 Ø位运算符  Ø三元运算符 Ø身份运算符 Ø成员运算符

  10. CTFshow萌新赛-千字文

    打开靶机 下载完成后,为一张二维码图片 使用StegSolve 解出隐写图像 保存后使用PS或其他工具去除白边 然后使用脚本分割这个图像(25*25) from PIL import Image im ...