Get Many Persimmon Trees

POJ - 2029

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 
 
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format. 


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T 

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H. 

The end of the input is indicated by a line that solely contains a zero. 

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

————————————————————————————————————————————————————————————

主要是为了练习二维线段树。点修改,区域查询。

用二维线段树写这个题目真的很蠢,随便一个方法都比它好。

————————————————————————————————————————————————————————————

  1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<cmath>
5 #include<algorithm>
6
7 using namespace std;
8 const int maxn=101;
9 struct LIE
10 {
11 int ll,lr,sum;
12 };
13 struct HANG
14 {
15 int hl,hr;
16 LIE lie[maxn<<2];
17 }hang[maxn<<2];
18 int t;
19 int n,m,w,h,ans=0;
20 void readint(int &x)
21 {
22 char c=getchar();
23 int f=1;
24 for(;c<'0' || c>'9';c=getchar())if(c=='-')f=-f;
25 x=0;
26 for(;c<='9'&& c>='0';c=getchar())x=(x<<1)+(x<<3)+c-'0';
27 x*=f;
28 }
29 void writeint(int x)
30 {
31 char s[20];
32 int js=0;
33 if(!x)
34 {
35 s[0]='0';
36 js=1;
37 }
38 else
39 {
40 while(x)
41 {
42 s[js]=x%10+'0';
43 js++;x/=10;
44 }
45 }
46 js--;
47 while(js>=0)putchar(s[js--]);
48 putchar('\n');
49 }
50 void buil(int pre,int cur,int ll,int lr)
51 {
52 hang[pre].lie[cur].ll=ll;hang[pre].lie[cur].lr=lr;
53 hang[pre].lie[cur].sum=0;
54 if(ll==lr)return ;
55 int mid=(ll+lr)>>1;
56 buil(pre,cur<<1,ll,mid);
57 buil(pre,cur<<1|1,mid+1,lr);
58 }
59 void build(int cur,int hl,int hr,int ll,int lr)
60 {
61 hang[cur].hl=hl;hang[cur].hr=hr;
62 buil(cur,1,ll,lr);
63 if(hl==hr)return ;
64 int mid=(hl+hr)>>1;
65 build(cur<<1,hl,mid,ll,lr);
66 build(cur<<1|1,mid+1,hr,ll,lr);
67 }
68 void upda(int pre,int cur,int y)
69 {
70 hang[pre].lie[cur].sum++;
71 if(hang[pre].lie[cur].ll==hang[pre].lie[cur].lr)return;
72 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
73 if(y<=mid)upda(pre,cur<<1,y);
74 else upda(pre,cur<<1|1,y);
75 }
76 void update(int cur,int x,int y)
77 {
78 upda(cur,1,y);
79 if(hang[cur].hl==hang[cur].hr)return;
80 int mid=(hang[cur].hl+hang[cur].hr)>>1;
81 if(x<=mid)update(cur<<1,x,y);
82 else update(cur<<1|1,x,y);
83 }
84 int quer(int pre,int cur,int yl,int yr)
85 {
86 if(yl<=hang[pre].lie[cur].ll && hang[pre].lie[cur].lr<=yr)return hang[pre].lie[cur].sum;
87 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
88 int ans=0;
89 if(yl<=mid)ans+=quer(pre,cur<<1,yl,yr);
90 if(mid<yr)ans+=quer(pre,cur<<1|1,yl,yr);
91 return ans;
92 }
93 int query(int cur,int xl,int xr,int yl,int yr)
94 {
95 if(xl<=hang[cur].hl && hang[cur].hr<=xr)return quer(cur,1,yl,yr);
96 int mid=(hang[cur].hl+hang[cur].hr)>>1;
97 int ans=0;
98 if(xl<=mid)ans+=query(cur<<1,xl,xr,yl,yr);
99 if(xr>mid)ans+=query(cur<<1|1,xl,xr,yl,yr);
100 return ans;
101 }
102 int main()
103 {
104 readint(t);
105 while(t)
106 {
107 readint(n);readint(m);
108 build(1,1,n,1,m);
109 for(int x,y,i=0;i<t;i++)
110 {
111 readint(x);readint(y);
112 update(1,x,y);
113 }
114 readint(w);readint(h);
115 ans=0;
116 for(int i=1;i<=n-w+1;i++)
117 for(int j=1;j<=m-h+1;j++)
118 {
119 ans=max(ans,query(1,i,i+w-1,j,j+h-1));
120 }
121 writeint(ans);
122 readint(t);
123 }
124 return 0;
125 }

POJ2029 二维线段树的更多相关文章

  1. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  2. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  3. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  4. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  5. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  6. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  7. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  8. HDU 4819 Mosaic --二维线段树(树套树)

    题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...

  9. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

随机推荐

  1. Axis2开发webservice详解

    Axis2开发webservice详解 标签: javawebserviceAxis2 2015-08-10 10:58 1827人阅读 评论(0) 收藏 举报  分类: JAVA(275)  服务器 ...

  2. react脚手架抽离webpack报错解决

    我们在写react项目的时候,可能原有的webpack配置不满足我们的需求,需要自己去配置,可是你在创建脚手架的时候并不能在外部找到webpack文件,脚手架的webpack文件在node_modul ...

  3. 运行命令区分webpack环境,以及axios数据请求的封装

    在开发环境和线上环境时,由于环境的不同,有时候需要修改一定的代码,可以通过配置webpack环境来减少对代码的修改:另外,有时候去看别人的代码,你可能都找不到他的数据请求在什么位置,最近在做一个vue ...

  4. Layui关闭弹出层对话框--刷新父界面

    在毕设的开发中,添加用户.添加权限等等一些地方需要类似于bootstrap中的模态框.然而开发用的却是layui 在layui中有弹出层可以实现其中的效果. 但是,一般用的时候都是提交后关闭窗口,刷新 ...

  5. 对于home主页的切换处理

    经过测试,发现,在home首页的时候,滑动到某一个位置的时候,如果再点击tabbar中的"购物车"."分类"或者"我的"的时候,再点击到首页 ...

  6. 关于git的一些零碎知识

    git文件的三个状态:已修改,已暂存,已提交git的三个区域: 工作区,暂存区,对象库 git的几个指针(以master为例) 远程有个master,本地有个master,本地有个指针是指向远程的ma ...

  7. SAML和OAuth2这两种SSO协议的区别

    目录 简介 SAML SAML的缺点 OAuth2 OAuth2的缺点 两者的对比 CAS简介 简介 SSO是单点登录的简称,常用的SSO的协议有两种,分别是SAML和OAuth2.本文将会介绍两种协 ...

  8. Linux介绍及系统安装

    1.Linux入门介绍 1.1简介 ​ Linux,全称GNU/Linux,是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX(Portable Operating System In ...

  9. netty服务端客户端启动流程分析

    服务端启动流程 我们回顾前面讲解的netty启动流程,服务端这边有两个EventLoopGroup,一个专门用来处理连接,一个用来处理后续的io事件 服务端启动还是跟nio一样,绑定端口进行监听,我们 ...

  10. 使用SharePoint App-Only获得访问权限

    目前在开发SharePoint Online的过程中,主要使用通过Azure AD的方式获得应用的访问权限,但是SharePoint App-Only的方式依旧被保留了.使用这种方式进行CSOM开发比 ...