bzoj3626: [LNOI2014]LCA (树链剖分+离线线段树)
Description
给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)
Input
第一行2个整数n q。
接下来n-1行,分别表示点1到点n-1的父节点编号。
接下来q行,每行3个整数l r z。
Output
输出q行,每行表示一个询问的答案。每个答案对201314取模输出
Sample Input
0
0
1
1
1 4 3
1 4 2
Sample Output
5
HINT
共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。
思路:因为题目要求树上编号为[L,R]这段区间的节点和z的lca深度和,我们如果把1到z的这条路径上的点的值都标记为1,那么结果就是[L,R]中的点到根节点1的路径上的值的和,那么我们也可以反过来想,我们先把[L,R]区间内1到i的路径经过的点都加上1,那么答案就是[1,R]的结果减去[1,L-1]的结果,然后我们可以离线处理询问了。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
#define lson th<<1
#define rson th<<1|1
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define MOD 201314
#define maxn 50050
struct edge{
int to,next;
}e[2*maxn];
int first[maxn],tot;
void addedge(int u,int v)
{
tot++;
e[tot].to=v;e[tot].next=first[u];
first[u]=tot;
}
int son[maxn],num[maxn],fa[maxn],dep[maxn];
int p[maxn],top[maxn],pos;
void dfs1(int u,int pre)
{
int i,j,v;
dep[u]=dep[pre]+1;
fa[u]=pre;
num[u]=1;
for(i=first[u];i!=-1;i=e[i].next){
v=e[i].to;
if(v==pre)continue;
dfs1(v,u);
if(son[u]==-1 || num[son[u] ]<num[v]){
son[u]=v;
}
num[u]+=num[v];
}
}
void dfs2(int u,int tp)
{
int i,j,v;
top[u]=tp;
if(son[u]!=-1){
p[u]=++pos;
dfs2(son[u],tp);
}
else{
p[u]=++pos;
return;
}
for(i=first[u];i!=-1;i=e[i].next){
v=e[i].to;
if(v==fa[u] || v==son[u])continue;
dfs2(v,v);
}
}
//线段树部分
struct node{
int l,r,add;
ll sum;
}b[4*maxn];
void build(int l,int r,int th)
{
int mid;
b[th].l=l;b[th].r=r;
b[th].add=b[th].sum=0;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,lson);
build(mid+1,r,rson);
}
void pushdown(int th)
{
if(b[th].add){
b[lson].add+=b[th].add;
b[lson].sum+=(ll)(b[lson].r-b[lson].l+1)*(ll)b[th].add;
b[rson].add+=b[th].add;
b[rson].sum+=(ll)(b[rson].r-b[rson].l+1)*(ll)b[th].add;
b[th].add=0;
}
}
void pushup(int th)
{
b[th].sum=b[lson].sum+b[rson].sum;
}
void update(int l,int r,int add,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
b[th].add+=add;
b[th].sum+=(ll)(b[th].r-b[th].l+1)*(ll)add;
return;
}
pushdown(th);
mid=(b[th].l+b[th].r)/2;
if(r<=mid)update(l,r,add,lson);
else if(l>mid)update(l,r,add,rson);
else{
update(l,mid,add,lson);
update(mid+1,r,add,rson);
}
pushup(th);
}
ll question(int l,int r,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
return b[th].sum;
}
pushdown(th);
mid=(b[th].l+b[th].r)/2;
if(r<=mid)return question(l,r,lson);
else if(l>mid)return question(l,r,rson);
else{
return question(l,mid,lson)+question(mid+1,r,rson);
}
}
ll ans[maxn][2];
struct node1{
int l,r,z;
}q[maxn];
vector<pair<pair<int,int>,int> >vec[maxn]; //z,idx
vector<pair<pair<int,int>,int> >::iterator it;
void gengxin(int u)
{
int i,j;
while(u!=0){
update(p[top[u]],p[u],1,1);
u=fa[top[u] ];
}
}
ll xunwen(int u)
{
int i,j;
ll num=0;
while(u!=0){
num+=question(p[top[u]],p[u],1);
u=fa[top[u] ];
}
return num;
}
int main()
{
int n,m,i,j,c,f,z,idx;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(first,-1,sizeof(first));
memset(son,-1,sizeof(son));
tot=0;
pos=0;
for(i=0;i<=n;i++)vec[i].clear();
for(i=2;i<=n;i++){
scanf("%d",&c);c++;
addedge(i,c);
addedge(c,i);
}
dep[0]=0;
dfs1(1,0);
dfs2(1,1);
build(1,pos,1);
for(i=1;i<=m;i++){
scanf("%d%d%d",&q[i].l,&q[i].r,&q[i].z);
q[i].l++;q[i].r++;q[i].z++;
vec[q[i].l-1 ].push_back(make_pair(make_pair(q[i].z,i),0) );
vec[q[i].r ].push_back(make_pair(make_pair(q[i].z,i),1) );
}
for(i=1;i<=n;i++){
gengxin(i);
for(j=0;j<vec[i].size();j++){
f=vec[i][j].second;
z=vec[i][j].first.first;
idx=vec[i][j].first.second;
ans[idx ][f]=xunwen(z);
}
}
for(i=1;i<=m;i++){
if(q[i].l==1)printf("%lld\n",ans[i][1]%MOD);
else printf("%lld\n",(ans[i][1]-ans[i][0])%MOD );
}
}
return 0;
}
bzoj3626: [LNOI2014]LCA (树链剖分+离线线段树)的更多相关文章
- bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status ...
- 【BZOJ5507】[GXOI/GZOI2019]旧词(树链剖分,线段树)
[BZOJ5507][GXOI/GZOI2019]旧词(树链剖分,线段树) 题面 BZOJ 洛谷 题解 如果\(k=1\)就是链并裸题了... 其实\(k>1\)发现还是可以用类似链并的思想,这 ...
- 【洛谷5439】【XR-2】永恒(树链剖分,线段树)
[洛谷5439][XR-2]永恒(树链剖分,线段树) 题面 洛谷 题解 首先两个点的\(LCP\)就是\(Trie\)树上的\(LCA\)的深度. 考虑一对点的贡献,如果这两个点不具有祖先关系,那么这 ...
- bzoj 4034 [HAOI2015] T2(树链剖分,线段树)
4034: [HAOI2015]T2 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1536 Solved: 508[Submit][Status] ...
- bzoj 1036 [ZJOI2008]树的统计Count(树链剖分,线段树)
1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 10677 Solved: 4313[Submit ...
- poj 3237 Tree(树链剖分,线段树)
Tree Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 7268 Accepted: 1969 Description ...
- bzoj 2243 [SDOI2011]染色(树链剖分,线段树)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4637 Solved: 1726[Submit][Status ...
- HDU 4366 Successor(树链剖分+zkw线段树+扫描线)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4366 [题目大意] 有一个公司,每个员工都有一个上司,所有的人呈树状关系,现在给出每个人的忠诚值和 ...
- 【BZOJ3531】旅行(树链剖分,线段树)
[BZOJ3531]旅行(树链剖分,线段树) 题面 Description S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足 从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教 ...
随机推荐
- 在Linux系统下限制指定目录的大小以及文件/文件夹数量
背景说明 在Linux操作系统下有时需要限制一个指定文件夹的大小和文件夹内可存储的文件数量,有可能是出于安全的考量或者定制化的配置,这里我们提供了一种方案:用dd创建一个空的img镜像,进行格式化的配 ...
- 【Oracle】Script to Collect DRM Information (drmdiag.sql) (文档 ID 1492990.1)
脚本对应如下: The following (drmdiag.sql) is a script to collect information related to DRM (Dyanamic Reso ...
- Hadoop2.7.7阿里云安装部署
阿里云的网络环境不需要我们配置,如果是在自己电脑上的虚拟机,虚拟机的安装步骤可以百度.这里是单机版的安装(也有集群模式的介绍)使用Xshell连接阿里云主机,用命令将自己下载好的安装包上传到服务器 # ...
- HTML基础复习3
CSS 可以理解为对HTML的一种补充 CSS由两部分组成:选择器.声明,声明中包含属性和值 CSS中的选择器 HTML标签选择器 类选择器 在标签上使用class属性为标签起个类名,在CSS中使用. ...
- 转 2 jmeter常用功能介绍-测试计划、线程组
2 jmeter常用功能介绍-测试计划.线程组 1.测试计划测试用来描述一个性能测试,所有内容都是基于这个测试计划的. (1)User Defined Variables:设置用户全局变量.一般添 ...
- 解析MySQL中存储时间日期类型的选择问题
解析MySQL中存储时间日期类型的选择问题_Mysql_脚本之家 https://www.jb51.net/article/125715.htm 一般应用中,我们用timestamp,datetime ...
- Redis连接池的相关问题分析与总结
https://mp.weixin.qq.com/s/juvr89lAvM0uuDmyWyvqNA 阿里干货课堂丨Redis连接池的相关问题分析与总结 原创 技术僧 Java进阶与云计算开发 2018 ...
- vue项目中如何引用tinymce
最近公司在做一个CMS系统的项目,其中富文本编辑框用的很多,目前流行的也很多,包括wangEditor.TinyMCE.百度ueditor.kindeditor.CKEditor等.经过自己的一番翻箱 ...
- 前端开发规范之命名规范、html规范、css规范、js规范
在学习编程的时候,每次看到那些整齐规范的代码,心里顿时对这个程序员表示点点好感,有时,比如看到自己和朋友写的代码时,那阅读起来就是苦不堪言,所以,一些基本的开发规范是必须的,是为了自己方便阅读代码,也 ...
- Java IO--字节流与字符流OutputStream/InputStream/Writer/Reader
流的概念 程序中的输入输出都是以流的形式保存的,流中保存的实际上全都是字节文件. 字节流与字符流 内容操作就四个类:OutputStream.InputStream.Writer.Reader 字节流 ...