bzoj3626: [LNOI2014]LCA (树链剖分+离线线段树)
Description
给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)
Input
第一行2个整数n q。
接下来n-1行,分别表示点1到点n-1的父节点编号。
接下来q行,每行3个整数l r z。
Output
输出q行,每行表示一个询问的答案。每个答案对201314取模输出
Sample Input
0
0
1
1
1 4 3
1 4 2
Sample Output
5
HINT
共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。
思路:因为题目要求树上编号为[L,R]这段区间的节点和z的lca深度和,我们如果把1到z的这条路径上的点的值都标记为1,那么结果就是[L,R]中的点到根节点1的路径上的值的和,那么我们也可以反过来想,我们先把[L,R]区间内1到i的路径经过的点都加上1,那么答案就是[1,R]的结果减去[1,L-1]的结果,然后我们可以离线处理询问了。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
#define lson th<<1
#define rson th<<1|1
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define MOD 201314
#define maxn 50050
struct edge{
int to,next;
}e[2*maxn];
int first[maxn],tot;
void addedge(int u,int v)
{
tot++;
e[tot].to=v;e[tot].next=first[u];
first[u]=tot;
}
int son[maxn],num[maxn],fa[maxn],dep[maxn];
int p[maxn],top[maxn],pos;
void dfs1(int u,int pre)
{
int i,j,v;
dep[u]=dep[pre]+1;
fa[u]=pre;
num[u]=1;
for(i=first[u];i!=-1;i=e[i].next){
v=e[i].to;
if(v==pre)continue;
dfs1(v,u);
if(son[u]==-1 || num[son[u] ]<num[v]){
son[u]=v;
}
num[u]+=num[v];
}
}
void dfs2(int u,int tp)
{
int i,j,v;
top[u]=tp;
if(son[u]!=-1){
p[u]=++pos;
dfs2(son[u],tp);
}
else{
p[u]=++pos;
return;
}
for(i=first[u];i!=-1;i=e[i].next){
v=e[i].to;
if(v==fa[u] || v==son[u])continue;
dfs2(v,v);
}
}
//线段树部分
struct node{
int l,r,add;
ll sum;
}b[4*maxn];
void build(int l,int r,int th)
{
int mid;
b[th].l=l;b[th].r=r;
b[th].add=b[th].sum=0;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,lson);
build(mid+1,r,rson);
}
void pushdown(int th)
{
if(b[th].add){
b[lson].add+=b[th].add;
b[lson].sum+=(ll)(b[lson].r-b[lson].l+1)*(ll)b[th].add;
b[rson].add+=b[th].add;
b[rson].sum+=(ll)(b[rson].r-b[rson].l+1)*(ll)b[th].add;
b[th].add=0;
}
}
void pushup(int th)
{
b[th].sum=b[lson].sum+b[rson].sum;
}
void update(int l,int r,int add,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
b[th].add+=add;
b[th].sum+=(ll)(b[th].r-b[th].l+1)*(ll)add;
return;
}
pushdown(th);
mid=(b[th].l+b[th].r)/2;
if(r<=mid)update(l,r,add,lson);
else if(l>mid)update(l,r,add,rson);
else{
update(l,mid,add,lson);
update(mid+1,r,add,rson);
}
pushup(th);
}
ll question(int l,int r,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
return b[th].sum;
}
pushdown(th);
mid=(b[th].l+b[th].r)/2;
if(r<=mid)return question(l,r,lson);
else if(l>mid)return question(l,r,rson);
else{
return question(l,mid,lson)+question(mid+1,r,rson);
}
}
ll ans[maxn][2];
struct node1{
int l,r,z;
}q[maxn];
vector<pair<pair<int,int>,int> >vec[maxn]; //z,idx
vector<pair<pair<int,int>,int> >::iterator it;
void gengxin(int u)
{
int i,j;
while(u!=0){
update(p[top[u]],p[u],1,1);
u=fa[top[u] ];
}
}
ll xunwen(int u)
{
int i,j;
ll num=0;
while(u!=0){
num+=question(p[top[u]],p[u],1);
u=fa[top[u] ];
}
return num;
}
int main()
{
int n,m,i,j,c,f,z,idx;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(first,-1,sizeof(first));
memset(son,-1,sizeof(son));
tot=0;
pos=0;
for(i=0;i<=n;i++)vec[i].clear();
for(i=2;i<=n;i++){
scanf("%d",&c);c++;
addedge(i,c);
addedge(c,i);
}
dep[0]=0;
dfs1(1,0);
dfs2(1,1);
build(1,pos,1);
for(i=1;i<=m;i++){
scanf("%d%d%d",&q[i].l,&q[i].r,&q[i].z);
q[i].l++;q[i].r++;q[i].z++;
vec[q[i].l-1 ].push_back(make_pair(make_pair(q[i].z,i),0) );
vec[q[i].r ].push_back(make_pair(make_pair(q[i].z,i),1) );
}
for(i=1;i<=n;i++){
gengxin(i);
for(j=0;j<vec[i].size();j++){
f=vec[i][j].second;
z=vec[i][j].first.first;
idx=vec[i][j].first.second;
ans[idx ][f]=xunwen(z);
}
}
for(i=1;i<=m;i++){
if(q[i].l==1)printf("%lld\n",ans[i][1]%MOD);
else printf("%lld\n",(ans[i][1]-ans[i][0])%MOD );
}
}
return 0;
}
bzoj3626: [LNOI2014]LCA (树链剖分+离线线段树)的更多相关文章
- bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status ...
- 【BZOJ5507】[GXOI/GZOI2019]旧词(树链剖分,线段树)
[BZOJ5507][GXOI/GZOI2019]旧词(树链剖分,线段树) 题面 BZOJ 洛谷 题解 如果\(k=1\)就是链并裸题了... 其实\(k>1\)发现还是可以用类似链并的思想,这 ...
- 【洛谷5439】【XR-2】永恒(树链剖分,线段树)
[洛谷5439][XR-2]永恒(树链剖分,线段树) 题面 洛谷 题解 首先两个点的\(LCP\)就是\(Trie\)树上的\(LCA\)的深度. 考虑一对点的贡献,如果这两个点不具有祖先关系,那么这 ...
- bzoj 4034 [HAOI2015] T2(树链剖分,线段树)
4034: [HAOI2015]T2 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1536 Solved: 508[Submit][Status] ...
- bzoj 1036 [ZJOI2008]树的统计Count(树链剖分,线段树)
1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 10677 Solved: 4313[Submit ...
- poj 3237 Tree(树链剖分,线段树)
Tree Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 7268 Accepted: 1969 Description ...
- bzoj 2243 [SDOI2011]染色(树链剖分,线段树)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4637 Solved: 1726[Submit][Status ...
- HDU 4366 Successor(树链剖分+zkw线段树+扫描线)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4366 [题目大意] 有一个公司,每个员工都有一个上司,所有的人呈树状关系,现在给出每个人的忠诚值和 ...
- 【BZOJ3531】旅行(树链剖分,线段树)
[BZOJ3531]旅行(树链剖分,线段树) 题面 Description S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足 从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教 ...
随机推荐
- 【Java基础】面向对象上
面向对象上 这一章主要涉及 Java 类及类的成员,包括属性.方法.构造器:代码块.内部类. 面向过程与面向对象 面向过程(Procedure Oriented Programming,POP)与面向 ...
- Java向指定Excel写入读取数据
今天在开发中遇到用户列表导入导出的功能实现,这里了解到使用POI函数库可以完成此任务!特此记录一下 POI Apache POI是Apache软件基金会开放的源码函数库,POI提供API给Java程序 ...
- (二)数据源处理5-excel数据转换实战(上)
把excel_oper02.py 里面实现的:通过字典的方式获取所有excel数据.放进utils: ️️️️️️️️️️️️️️️️️️️️️️️️️️️️️️️ utils: def get_al ...
- 【Problems】Could not set property 'id' of 'xxx' with value '' Cause argument type mismatch
一个问题:向comment表添加记录时,报错, 无法设置值. reflection.ReflectionException: Could not set property 'id' of 'class ...
- 【EXPDP】指定导出,只导出函数,导出的时候加上where条件过滤
expdp导出的时候可以使用parfile这个参数,在parfile中添加想要的导出信息: 这里简单写了几句: vim test.par include=function --导出函数 inc ...
- List使用Stream流进行集合Collection的各种运算汇总:对BigDecimal求和,某个字段的和、最大值、最小值、平均值,字段去重,过滤等
写Java接口的朋友都知道,Java 8的更新,经常会用到过滤 list<Object> 里的数据,本文就对List使用Stream流进行集合Collection的各种运算做一个汇总! 优 ...
- v-model语法糖
其实v-model就是一个结合了v-bind和v-on的语法糖,实现了双向数据绑定. 举个(栗子):
- 日常分享:关于时间复杂度和空间复杂度的一些优化心得分享(C#)
前言 今天分享一下日常工作中遇到的性能问题和解决方案,比较零碎,后续会持续更新(运行环境为.net core 3.1) 本次分享的案例都是由实际生产而来,经过简化后作为举例 Part 1(作为简单数据 ...
- mysql(连接查询和数据库设计)
--创建学生表 create table students ( id int unsigned not null auto_increment primary key, name varchar(20 ...
- 整合阿里云OSS
整合阿里云OSS 一.对象存储OSS 为了解决海量数据存储与弹性扩容,采用云存储的解决方案- 阿里云OSS. 1.开通"对象存储OSS"服务 (1)申请阿里云账号 (2)实名认证 ...