题目链接:  51nod1674

题意:规定一个区间的价值为这个区间中所有数and起来的值与这个区间所有数or起来的值的乘积。现在l有一个 N 个数的序列,问所有n*(n+1)/2个区间的贡献的和对1000000007取模后的结果。

解法:暴力是O(n^2),我是尽量找了相差1的区间之间的规律,枚举区间的右端点可以发现当区间 [ l , r ]在右边新添一个数 r+1 时,答案要加上 [r+1,r+1]、[r,r+1]、[r-1,r+1] ...... [1,r+1]。就可以每次存储 f [ i ] 和 g [ i ] 分别为 [ i , r ] 的“与和”和“或和”。再对 r+1 更新就好。
    当然暴力最先想到的其实是枚举左端点,右端点递增,若有 f[ ] * g[ ] 为0,就枚举下一个左端点,这样或许能水多一点分的。

然而,正解确实是按我想的那个暴力的基础上优化为 O(n log n) 的。因为事实上每次存储的 f[ ] 和 g[ ],都有不少 f [ i ]=f [ j ] 且 g [ i ]=g [ j ],那么就可以合并,这样在枚举右端点的情况下扫描的数目就少了,数目为 log n 级别的。因为 n 的二进制有 log n 位,而每次变化最少是1个位变化,那么不同的 f[ ] 和 g[ ] 不同的组合数最多就是 2*log n(位变化成不同的数)了。那么我们也可以每次对 f[ ] 和 g[ ] 更新时考虑可并。若更新后的值有变化,要不是 f[ ] 有由 1→0,要不就是 g[ ] 有由 0→1,且是不可还原的,也就是不会再由 0→1 或 1→0。它就有可能变成和自己后面的一对 f[ ] 和 g[ ] 相同,若有相同的我们便把它们合并。使用链表实现。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<algorithm>
5 #include<iostream>
6 using namespace std;
7 #define N 100010
8 #define mod 1000000007
9 typedef long long LL;
10
11 LL a[N],sum;
12 int st,ed;
13 struct node{LL f,g;int t,next,last;}s[N];//f[i] 从i到当前的r-1的&值
14
15 void ins(int x,int llast)
16 {
17 s[++ed].t=1; s[ed].f=s[ed].g=a[x];
18 if (llast!=-1) s[ed].last=llast;
19 else s[ed].last=ed-1;
20 s[ed].next=ed+1;
21 sum=(sum+(a[x]*a[x])%mod)%mod;
22 }
23 int main()
24 {
25 int n;
26 scanf("%d",&n);
27 for (int i=1;i<=n;i++)
28 scanf("%I64d",&a[i]);
29 st=1,ed=0; sum=0;
30 ins(1,0);
31 for (int r=2;r<=n;r++)
32 {
33 int llast=-1;
34 for (int i=st;i<=ed;i=s[i].next)
35 {//f 1→0 g 0→1
36 s[i].f=(s[i].f&a[r])%mod;
37 s[i].g=(s[i].g|a[r])%mod;
38 sum=(sum+((LL)(s[i].f*s[i].g)%mod*s[i].t)%mod)%mod;
39 int p=s[i].last;
40 if (p && s[i].f==s[p].f && s[i].g==s[p].g)
41 {
42 if (st==p) st=i;
43 s[i].last=s[p].last;
44 s[s[p].last].next=i;
45 s[i].t+=s[p].t;
46 }
47 if (!s[i].f)
48 {
49 if (!p) st=s[i].next;
50 if (s[i].next>ed) llast=p;//
51 s[s[i].next].last=p;
52 s[p].next=s[i].next;
53 }
54 }
55 ins(r,llast);
56 }
57 printf("%I64d\n",sum);
58 return 0;
59 }

WA

P.S.唉,这题做了2个多小时,还是WA了~TwT

【51nod1674】区间的价值 V2(算法效率--位运算合并优化+链表实现)的更多相关文章

  1. 51nod 1674 区间的价值V2(思维+拆位+尺取法)

    最近被四区题暴虐... 题意:lyk拥有一个区间. 它规定一个区间的价值为这个区间中所有数and起来的值与这个区间所有数or起来的值的乘积. 例如3个数2,3,6.它们and起来的值为2,or起来的值 ...

  2. 1674 区间的价值 V2(分治)

    1674 区间的价值 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 lyk拥有一个区间. 它规定一个区间的价值为这个区间中所有数and起来的值与这个区间所有 ...

  3. 剑指offer—算法之位运算(二进制中1的个数)

    位运算: 左移:m<<n将m左移n位,左移后低位补充0: 右移:m>>n将m右移n位,右移后高位补充的是符号位,负数补充1,整数补充0.(正数的边界值为(1,ox7FFFFFF ...

  4. 【51Nod 1674】【算法马拉松 19A】区间的价值 V2

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1674 对区间分治,统计\([l,r]\)中经过mid的区间的答案. 我的 ...

  5. 51NOD 区间的价值 V2

    http://www.51nod.com/contest/problem.html#!problemId=1674 因为题目要求的只是& 和 | 这两个运算.而这两个运算产生的值是有限的. & ...

  6. 剑指offer算法_位运算求和

    不用+,-,*,/运算求和,可以分成三步: 1.计算两个数字的异或值,相当于只计算每一位的和,不计算进位,得出结果sum: 2.计算两个数字的与值,相当于求出两个数字的进位,然后左移一位,相当于进位, ...

  7. 【科技】位运算(bitset)优化最长公共子序列算法

    最长公共子序列(LCS)问题 你有两个字符串 \(A,B\),字符集为 \(\Sigma\),求 \(A, B\) 的最长公共子序列. 简单动态规划 首先有一个广为人知的 dp:\(f_{i,j}\) ...

  8. 位运算卷积-FWT

    问题 给出两个幂级数 \(f,g\) ,求 \[ h=\sum _i\sum _jx^{i\oplus j}f_ig_j \] 其中 \(\oplus\) 是可拆分的位运算. 算法 由于位运算具有独立 ...

  9. POJ 1753 位运算+枚举

    题意: 给出4*4的棋盘,只有黑棋和白棋,问你最少几步可以使棋子的颜色一样. 游戏规则是:如果翻动一个棋子,则该棋子上下左右的棋子也会翻一面,棋子正反面颜色相反. 思路: 都是暴搜枚举. 第一种方法: ...

随机推荐

  1. 【老孟Flutter】为什么 build 方法放在 State 中而不是在 StatefulWidget 中

    老孟导读:此篇文章是生命周期相关文章的番外篇,在查看源码的过程中发现了这一有趣的问题,欢迎大家一起探讨. Flutter 中Stateful 组件的生命周期:http://laomengit.com/ ...

  2. ASP.NET Core 3.1 中间件

    参考微软官方文档 : https://docs.microsoft.com/zh-cn/aspnet/core/fundamentals/middleware/?view=aspnetcore-3.1 ...

  3. 总结下MySql优化。防止数据灾难的发生。

    在PHP开发中用到的数据库中MySql是最牛逼的数据库,没有之一--^_^ 相比Sqlite个人最喜欢的特性就是"支持多线程,充分利用 CPU 资源",不像Sqlite那样,动不动 ...

  4. NodeJS之npm、cnpm、npx、yarn

    一.npm 1,概念 npm 是 Node.js 官方提供的包管理工具,他已经成了 Node.js 包的标准发布平台,用于 Node.js 包的发布.传播.依赖控制.npm 提供了命令行工具,使你可以 ...

  5. 微信小程序request请求的封装

    目录 1,前言 2,实现思路 3,实现过程 3.1,request的封装 3.2,api的封装 4,实际使用 1,前言 在开发微信小程序的过程中,避免不了和服务端请求数据,微信小程序给我们提供了wx. ...

  6. alter column和modify column

    5.6中,发现其实alter column 和更改modify column 步骤是一样的 mysql> create table xs(name varchar(12),age int def ...

  7. 【Oracle】regexp_substr()函数详解

    环境:Oracle10.2.0.5 在SQL中尝试使用正则 可以试下regexp_substr()来进行分割 首先创建一个实验视图: SQL> create or replace view te ...

  8. xray—学习笔记

    长亭xray扫描器 简介 xray (https://github.com/chaitin/xray) 是从长亭洞鉴核心引擎中提取出的社区版漏洞扫描神器,支持主动.被动多种扫描方式,自备盲打平台.可以 ...

  9. 原生js制作表单验证,基本的表单验证方法

    表单验证是web前端最常见的功能之一,也属于前端开发的基本功.自己完成一个表单验证的开发,也有助于加深对字符串处理和正则表达式的理解. 基本的表单验证包括如:字母验证.数字验证.字母和数字验证.汉字验 ...

  10. 04--Docker数据卷和数据卷容器

    .为什么要使用数据卷: Docker容器产生的数据,如果不通过docker commit生成新的镜像,使得数据做为镜像的一部分保存下来,那么当容器删除后,数据自然也就没有了.为了能保存数据在docke ...