• 题意:给你一个矩阵\(a\)和\(b\),你可以对\(a\)的任意一行或任意一列的所有元素xor\(1\)任意次,问最终是否能够得到\(b\).
  • 题解:由\(a\ xor\ b=c\),可得:\(a\ xor \ c=b\),根据线性代数的知识我们只需要判断\(c\)是否能由零矩阵通过上述变换得来即可.因为\(a\ xor\ c\)可以看成\(a\ xor \ 0(进行上述变换得到c)\).也就说明\(a\)可以通过上述变换得到\(b\),而\(c\)的判断,我们只需确定一行或者一列\(0\)后,b变换其他列或行判断即可.
  • 代码:
#include <bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
#define rep(a,b,c) for(int a=b;a<=c;++a)
#define per(a,b,c) for(int a=b;a>=c;--a)
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b) {return a/gcd(a,b)*b;} int _;
char a[1010][1010];
char b[1010][1010]; int main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); cin>>_;
while(_--){
int n;
cin>>n;
rep(i,1,n){
rep(j,1,n){
cin>>a[i][j];
}
}
rep(i,1,n){
rep(j,1,n){
cin>>b[i][j];
a[i][j]^=b[i][j];
}
} rep(i,1,n){
if(a[i][1]==1){
rep(j,1,n) a[i][j]^=1;
}
}
rep(j,1,n){
if(a[1][j]==1){
rep(i,1,n) a[i][j]^=1;
}
} bool flag=true; rep(i,1,n){
rep(j,1,n){
if(a[i][j]==1){
flag=false;
break;
}
}
if(!flag) break;
} if(flag) cout<<"YES\n";
else cout<<"NO\n";
} return 0;
}

Codeforces Round #697 (Div. 3) F. Unusual Matrix (思维,数学)的更多相关文章

  1. Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)

    F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...

  2. Codeforces Round #697 (Div. 3) G. Strange Beauty (DP,数学)

    题意:给你一组数,问你最少删去多少数,使得剩下的数,每个数都能整除数组中其它某个数或被数组中其它某个数整除. 题解:我们直接枚举所有因子,\(dp[i]\)表示\(i\)在数组中所含的最大因子数(当我 ...

  3. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  4. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  5. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

  6. 二分查找/暴力 Codeforces Round #166 (Div. 2) B. Prime Matrix

    题目传送门 /* 二分查找/暴力:先埃氏筛选预处理,然后暴力对于每一行每一列的不是素数的二分查找最近的素数,更新最小值 */ #include <cstdio> #include < ...

  7. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  8. Codeforces Round #368 (Div. 2) C. Pythagorean Triples(数学)

    Pythagorean Triples 题目链接: http://codeforces.com/contest/707/problem/C Description Katya studies in a ...

  9. Codeforces Round #622 (Div. 2) B. Different Rules(数学)

    Codeforces Round #622 (Div. 2) B. Different Rules 题意: 你在参加一个比赛,最终按两场分赛的排名之和排名,每场分赛中不存在名次并列,给出参赛人数 n ...

随机推荐

  1. springboot源码解析-管中窥豹系列之aware(六)

    一.前言 Springboot源码解析是一件大工程,逐行逐句的去研究代码,会很枯燥,也不容易坚持下去. 我们不追求大而全,而是试着每次去研究一个小知识点,最终聚沙成塔,这就是我们的springboot ...

  2. LeetCode116 每个节点的右向指针

    给定一个二叉树 struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; } 填充它的每个 ...

  3. 剑指offer 面试题6:从尾到头打印链表

    题目描述 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 编程思想 从前往后遍历,将值存入栈中,然后打印栈中内容即可. 编程实现 /** * struct ListNode { * ...

  4. 【Linux】vim关闭终端的时候,忘记退出vim怎么办

    有些时候经常是关闭终端,但是忘记退出vim编辑的文本,每次登陆的时候会提示这个错误 其实很简单,在该文本的路径下,有一个隐藏文件 叫.xxx.txt.swp文件(xxx就是你退出忘记关闭的文件名). ...

  5. GitLab-CI/CD入门实操

    以Spring boot项目为例.传统方式是本地生成jar包,FTP上传服务器,重启服务:如果是内网测试服,也可以在服务器上安装git,在服务器上编译打包.但这都需要人为干预,于是CI/CD就出现了. ...

  6. 基于FPGA的光口通信开发案例|基于Kintex-7 FPGA SFP+光口的10G UDP网络通信开发案例

    前言 自著名华人物理学家高锟先生提出"光传输理论",实用化的光纤传输产品始于1976年,经历了PDH→SDH→DWDM→ASON→MSTP的发展历程.本世纪初期,ASON/OADM ...

  7. JDK的各个版本

    Java的各个版本 从上图我们看出,Java的版本名最开始以JDK开头,后来以j2se开头,最后到现在以Java开头,所以这些名字我们都可以说,但人们说的更多的是JDK多少,或者Java多少

  8. 微服务网关2-搭建Gateway服务

    一.创建父模块infrastructure 1.创建模块 在guli_parent下创建普通maven模块 Artifact:infrastructure 2.删除src目录 二.创建模块api_ga ...

  9. vim 查找并替换多个匹配字符

    通常我们在使用vim的使用需要查找文档中是否含有需要的字符 1.vim 1.txt进入文档编辑 2.输入/键,再输入需要查找的字符,或者输入?键再输入需要查找的字符 3.查找到后可以enter进去,再 ...

  10. CF42A

    题意 给定两个序列 a 和 b. 序列 a 中的各个数之间的比例可以得出一个 x . 当 b 中比例满足 a 中比例,即 \(b_1\):\(b_2\):\(b_3\)-- \(=\) \(a_1\) ...