Codeforces Round #651 (Div. 2) A. Maximum GCD (思维)

题意:在\(1\)~\(n\)中找两个不相等的数使得他们的\(gcd\)最大.
题解:水题,如果\(n\)是偶数,那么一定取\(n\)和\(n/2\),\(n\)是奇数的话,取\(n-1\)和\((n-1)/2\).
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <unordered_set>
#include <unordered_map>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL; int t;
int n; int main() {
ios::sync_with_stdio(false);cin.tie(0);
cin>>t;
while(t--){
cin>>n;
if(n%2==0){
cout<<n/2<<endl;
}
else{
cout<<(n-1)/2<<endl;
}
} return 0;
}
Codeforces Round #651 (Div. 2) A. Maximum GCD (思维)的更多相关文章
- Codeforces Round #651 (Div. 2) A Maximum GCD、B GCD Compression、C Number Game、D Odd-Even Subsequence
A. Maximum GCD 题意: t组输入,然后输入一个n,让你在区间[1,n]之间找出来两个不相等的数a,b.求出来gcd(a,b)(也就是a,b最大公约数).让你求出来最大的gcd(a,b)是 ...
- Codeforces Round #651 (Div. 2) A. Maximum GCD(数论)
题目链接:https://codeforces.com/contest/1370/problem/A 题意 有 $n$ 个数大小分别为 $1$ 到 $n$,找出两个数间最大的 $gcd$ . 题解 若 ...
- Codeforces Round #651 (Div. 2) B. GCD Compression(数论)
题目链接:https://codeforces.com/contest/1370/problem/B 题意 给出 $2n$ 个数,选出 $2n - 2$ 个数,使得它们的 $gcd > 1$ . ...
- Codeforces Round #651 (Div. 2) B. GCD Compression (构造)
题意:有一个长度为\(2n\)的数组,删去两个元素,用剩下的元素每两两相加构造一个新数组,使得新数组所有元素的\(gcd\ne 1\).输出相加时两个数在原数组的位置. 题解:我们按照新数组所有元素均 ...
- Codeforces Round #221 (Div. 1) B. Maximum Submatrix 2 dp排序
B. Maximum Submatrix 2 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset ...
- Codeforces Round #276 (Div. 1) B. Maximum Value 筛倍数
B. Maximum Value Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/484/prob ...
- Codeforces Round #554 (Div. 2)-C(gcd应用)
题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...
- Codeforces Round #508 (Div. 2) E. Maximum Matching(欧拉路径)
E. Maximum Matching 题目链接:https://codeforces.com/contest/1038/problem/E 题意: 给出n个项链,每条项链左边和右边都有一种颜色(范 ...
- Codeforces Round #347 (Div.2)_A. Complicated GCD
题目链接:http://codeforces.com/contest/664/problem/A A. Complicated GCD time limit per test 1 second mem ...
随机推荐
- 隐马尔科夫模型(HMM)原理详解
隐马尔可夫模型(Hidden Markov Model,HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM在语音识别.自然语言处理.生物信息.模 ...
- Mysql数据类型以及特性,,,防止SQL注入
MyISAM.InnoDB.HEAP.BOB,ARCHIVE,CSV等 MyISAM:成熟.稳定.易于管理,快速读取.一些功能不支持(事务等),表级锁. InnoDB:支持事务.外键等特性.数据行锁定 ...
- 【Oracle】查看oracle用户相关权限
系统权限 SELECT * FROM DBA_SYS_PRIVS WHERE GRANTEE = 'CHAXUN' UNION ALL SELECT * FROM DBA_SYS_PRIVS WHER ...
- oracle创建恢复编录(recovery catalog)
1.在要作为恢复编录的数据库创建用户 create user rman identified by oracle default tablespace system temporary TABLESP ...
- [从源码学设计]蚂蚁金服SOFARegistry之延迟操作
[从源码学设计]蚂蚁金服SOFARegistry之延迟操作 0x00 摘要 SOFARegistry 是蚂蚁金服开源的一个生产级.高时效.高可用的服务注册中心. 本系列文章重点在于分析设计和架构,即利 ...
- HTML基础复习3
CSS 可以理解为对HTML的一种补充 CSS由两部分组成:选择器.声明,声明中包含属性和值 CSS中的选择器 HTML标签选择器 类选择器 在标签上使用class属性为标签起个类名,在CSS中使用. ...
- websocket的应用---Django
websocket的应用---Django 1.长轮询 轮询:在前端通过写js实现.缺点:有延迟.服务器压力大. 就是客户端通过一定的时间间隔以频繁请求的方式向服务器发送请求,来保持客户端和服务器端的 ...
- 【IDEA】Lombok--是否值得我们去使用
官网 https://projectlombok.org/ 简介 Project Lombok is a java library that automatically plugs into your ...
- Java Object类 和 String类 常见问答 6k字+总结
写在最前面 这个项目是从20年末就立好的 flag,经过几年的学习,回过头再去看很多知识点又有新的理解.所以趁着找实习的准备,结合以前的学习储备,创建一个主要针对应届生和初学者的 Java 开源知识项 ...
- PowerBI官方文档
Excel 帮助和学习 - Microsoft 支持https://support.microsoft.com/zh-cn/excel Power Query M 公式语言引用 - PowerQuer ...