GYM101889J Jumping frog
突然发现题刷累了写写题解还是满舒服的
题目大意:
给你一个只包含 \(R\) , \(P\) ,长度为 \(n\) 的字符串( \(3\le n\le 10^5\) )。你可以选择一个跳跃距离 \(l\) ( \(1\le l\le n-1\) ),并对于每一种跳跃距离,你可以随意选择一个起点,进行若干次跳跃后回到起点(字符串首尾相接构成一个环),问有多少种距离是满足存在一种跳跃情况使得期间没有经过 \(P\) 。
题解:
经过若干次尝试,我们可以轻易的发现,任意一个跳跃距离 \(l\) ,他完全等价与跳跃距离为 \(gcd(l,n)\) 的情况,也就是说,我们如果可以判断出 \(n\) 的所有可能的 \(gcd\) ,再判断,同时计算出与 \(n\) 有着此 \(gcd\) 的数的个数,我们就可以计算答案了。
\(n\) 的所有可能的 \(gcd\) 就是 \(n\) 的因数,我们可以用线性筛筛素数,再分解质因数,最后得出所有的因数并判断,复杂度在 \(O(n\sqrt{n})\) 左右。
然后我们考虑如何得出对于每一种因数,有多少个数与 \(n\) 的 \(gcd\) 为它。我们设 \(gcd(l,n)=x\) ,易得 \(gcd(l/x,n/x)=1\) ,所以我们就相当于求在 \(1\sim n/x-1\) 中,有多少个数与 \(n/x\) 互质,这不就是 $\varphi $ 函数吗?处理 $\varphi $ 函数可以放在线性筛中,这里的复杂度为 \(O(n)\) 。
总复杂度为 \(O(n\sqrt{n})\) 左右。
作者辛辛苦苦写完了题解,才发现可以直接 \(dp\) ,不需要这么麻烦,枯了。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
char s[N];
int len;
int eul[N],pri[N],lpri=0;
int cnt[N];
bool vis[N];
int ans=0;
int gcd(int a,int b)
{
if(b==0)
return a;
return gcd(b,a%b);
}
bool tag[N];
void dfs(int now,int sum)
{
if(now>lpri)
{
if(len%sum)
return ;
int cnt=sum;
memset(tag,0,sizeof(tag));
for(int i=1;i<=len;++i)
{
if(s[i]=='R')
continue;
if(!tag[i%sum])
{
tag[i%sum]=true;
--cnt;
}
}
if(cnt)
ans+=eul[len/sum];
return ;
}
int tmp=1;
for(int i=0;i<=cnt[now];++i)
{
dfs(now+1,sum*tmp);
tmp*=pri[now];
}
return ;
}
int main()
{
scanf("%s",s+1);
len=strlen(s+1);
for(int i=2;i<=len;++i)
{
if(!vis[i])
{
eul[i]=i-1;
pri[++lpri]=i;
}
for(int j=1;j<=lpri;++j)
{
if(i*pri[j]>len)
break;
vis[i*pri[j]]=true;
if(i%pri[j])
eul[i*pri[j]]=eul[i]*eul[pri[j]];
else
{
eul[i*pri[j]]=eul[i]*pri[j];
break;
}
}
}
int tmp=len;
for(int i=1;i<=lpri;++i)
{
while(tmp%pri[i]==0)
{
tmp/=pri[i];
++cnt[i];
}
}
dfs(1,1);
printf("%d\n",ans);
}
GYM101889J Jumping frog的更多相关文章
- Gym101889J. Jumping frog(合数分解+环形dp预处理)
比赛链接:传送门 题目大意: 一只青蛙在长度为N的字符串上跳跃,“R”可以跳上去,“P”不可以跳上去. 字符串是环形的,N-1和0相连. 青蛙的跳跃距离K的取值范围是[1, N-1],选定K之后不可改 ...
- 2017-2018 ACM-ICPC Latin American Regional Programming Contest J - Jumping frog 题解(gcd)
题目链接 题目大意 一只青蛙在长度为N的字符串上跳跃,"R"可以跳上去,"P"不可以跳上去. 字符串是环形的,N-1和0相连. 青蛙的跳跃距离K的取值范围是[1 ...
- Generative Adversarial Nets[CycleGAN]
本文来自<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>,时间线为2017 ...
- Gym 101889:2017Latin American Regional Programming Contest(寒假自训第14场)
昨天00.35的CF,4点才上床,今天打的昏沉沉的,WA了无数发. 题目还是满漂亮的. 尚有几题待补. C .Complete Naebbirac's sequence 题意:给定N个数,他们在1到K ...
- 2017-2018 ACM-ICPC Latin American Regional Programming Contest Solution
A - Arranging tiles 留坑. B - Buggy ICPC 题意:给出一个字符串,然后有两条规则,如果打出一个辅音字母,直接接在原字符串后面,如果打出一个元音字母,那么接在原来的字符 ...
- 训练20191007 2017-2018 ACM-ICPC Latin American Regional Programming Contest
2017-2018 ACM-ICPC Latin American Regional Programming Contest 试题地址:http://codeforces.com/gym/101889 ...
- 2017-2018 ACM-ICPC Latin American Regional Programming Contest PART (11/13)
$$2017-2018\ ACM-ICPC\ Latin\ American\ Regional\ Programming\ Contest$$ \(A.Arranging\ tiles\) \(B. ...
- 2017年上海金马五校程序设计竞赛:Problem I : Frog's Jumping (找规律)
Description There are n lotus leaves floating like a ring on the lake, which are numbered 0, 1, ..., ...
- CF1146D Frog Jumping
CF1146D Frog Jumping 洛谷评测传送门 题目描述 A frog is initially at position 00 on the number line. The frog ha ...
随机推荐
- 七:Redis的持久化
1.RDB(Redis DataBase) 1.1 定义:在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的snapshot快照,他恢复时是将快照文件直接读到内存里 是什么:Redis会单 ...
- 15 张图, 把TCP/IP 讲得一清二楚!
一.TCP/IP模型 TCP/IP协议模型(Transmission Control Protocol/Internet Protocol),包含了一系列构成互联网基础的网络协议,是Interne ...
- Linux上Mysql数据库 用户权限控制
Linux安装mysql 点我直达 Mysql限制root用户ip地址登录 修改mysql库里边的user表: update mysql.user set host='localhost' where ...
- 汇编语言CPU状态控制指令
CPU状态控制指令 1.空操作指令NOP /该指令不执行任何操作,只是使IP加1,其机器码占有一个字节的存储单元,常用于程序调试./ 2.总线封锁前缀指令LOCK /该指令与其他指令联合使用,作为指令 ...
- [原题复现][2020i春秋抗疫赛] WEB blanklist(SQL堆叠注入、handler绕过)
简介 今天参加i春秋新春抗疫赛 一道web没整出来 啊啊啊 好垃圾啊啊啊啊啊啊啊 晚上看群里赵师傅的buuoj平台太屌了分分钟上线 然后赵师傅还分享了思路用handler语句绕过select过滤.. ...
- 阿里面试官:你连个java多线程都说不清楚,我招你进来干什么
创建线程的方法 继承Thread类 继承Thread类,重写run方法,通过线程类实例.start()方法开启线程. public class TestThread1 extends Thread{ ...
- 下载器Folx怎么安装使用
应该使用哪个下载工具?这个如果是Windows上会有无数答案的问题,在Mac上却变得异常的纠结.比如Leech和Aria2,这两款软件,前者功能相对比较简单,后者的配置又稍微有点复杂,很难找到一款相对 ...
- FL Studio 插件使用教程 —— 3x Osc(上)
在FL Studio20 中,3x Osc是继TS404插件之后资历最老的插件之一,也是FL Studio20 中最重要.使用率最高的插件之一.相比别的FL Studio20内置插件,3x Osc 相 ...
- selenium WebDriver提示Unable to find a matching set of capabilities解决方法
问题出在:应该将火狐浏览器驱动添加到火狐浏览器安装目录下,并且将火狐浏览器安装目录放在path下面.(出现大意,忘了在火狐浏览器下放其对应的驱动) 亲测以下组合方式可用: pycharm-comm ...
- Thread.start() ,它是怎么让线程启动的呢?
作者:小傅哥 博客:https://bugstack.cn Github:https://github.com/fuzhengwei/CodeGuide/wiki 沉淀.分享.成长,让自己和他人都能有 ...