Ehab's REAL Number Theory Problem

前置知识

质数

分解质因数

无向无权图最小环<讲>


Ehab's REAL Number Theory Problem/onCF

给 \(n\) 个数 \(a_i\)(\(a_i\) 的因数个数不超过 \(7\)),求最少选出多少个数,使得乘积为完全平方。无解输出 \(-1\)。

数据范围:\(1\le n\le 10^5\),\(1\le a_i\le 10^6\)。


没想到一场普通的 \(\texttt{CF}\) 比赛能出出这么毒瘤好的题!


很明显,把每个 \(a_i\) 的平方因子除尽后对答案没有影响,所以可以把每个 \(a_i\) 的平方因子除尽。

如果某个 \(a_i\) 的质因子除尽后为 \(1\),直接选它便解决了问题。

然后剩下的质因子的幂次肯定为 \(1\)

而且最多只有两个质因子,因为如果 \(a_i\) 有三个质因子,按照约数个数定理,\(d(a_i)=(1+1)^3=8>7\),矛盾

最后问题简化为,选最少的数,使乘积包含的质因子幂次都为 2(可以自己想为什么不需要选幂次为 \(4\))。

过程:

\[18=2\times 3^2\to 2
\]

有一个极其巧妙的方法是建一个图,节点是质数,然后把每个数转换为它的两个质因子之间的一条边,求最小环

如果某个数 \(a_i\) 质因数个数为 \(1\)(不存在为 \(0\) 的,因为已经满足方案),把 \(1\) 也看做质数节点,连 \(1\) 和 \(a_i\)。

根据环的性质,每个点的度为 \(2\),所以边对应的数的乘积每个质因子幂次都为 \(2\)

边没有长度,是无向边,所以问题又简化为了求无向无权图最小环

过程:

\(a_i\):2 3 6 15

\[2\to 1\times 2,3\to 1\times 3,6\to 2\times 3,15\to 3\times 5
\]

最小环为 \((1,2,3)\)。


无向无权图最小环使不得 \(\texttt{Floyd}\)!这里的点数最大约是 \(78500\),\(\Theta(n^3)\) 能跑到射手座去了。

可以枚举起点,然后 \(\texttt{Bfs}\),因为问题特殊,所以可以有很大优化。

因为 \(1\le a_i\le 10^6\),所以每个 \(a_i\) 对应的边不可能连接两个 \(>1000\) 的质数。

所以如果有环,那么环必然有一个起点对应的质数 \(\in[1,1000]\)。

所以可以枚举这个起点 \(s\),然后 \(\texttt{Bfs}\)。

设 \(dep_x\) 表示节点 \(x\) 的深度,所以 \(dep_s=0\)。每次 \(Bfs\) 前清空。

然后沿着队列顶的点 \(x\) 连的边走如果走到一个 \(dep\) 未赋值的节点 \(to\),就令 \(dep_{to}=dep_x+1\)。

如果走到一个已经遍历过的点,那么说明这里有一个环,令 \(ans=\min\{ans,dep_{to}+dep_x+1\}\)。

\(\texttt{Bfs}\) 过程中可以走重复的点,不能走重复的边。

这里有一个问题:如何知道这个环是否以 \(s\) 为其中一个起点呢?

答案是不需要知道,无论 \(s\) 在不在环上都直接 \(ans=\min\{ans,dep_{to}+dep_x+1\}\)。

因为如果 \(s\) 不在环上,\(dep_{to}+dep_x+1\) 肯定比 \(s\) 在环上大(别忘了每个 \(s\) 都要枚举过去的啊!)。

时间复杂度 \(\Theta(n \sqrt n)\)。

过程:

只展示 \(s=1\) 的 \(\texttt{Bfs}\) 过程:


代码实现的时候,可以把质数离散化一下。

\(\texttt{code}\)

#include <bits/stdc++.h>
using namespace std; //&Start
#define inf 0x3f3f3f3f
#define re register
#define il inline
typedef long long lng;
typedef vector<int> veci; //&Data
#define N 100000
#define MX 1000000
#define P 78500--->1000000内质数数量
int n,a[N+10]; //&Prime--->筛质数
bitset<MX+10> np;
int p[P+10],ip[MX+10],pcnt,S;
il void Prime(){
np[1]=true,ip[1]=p[++pcnt]=S=1;
for(re int i=2;i<=MX;i++){
if(!np[i]) p[++pcnt]=i,ip[i]=pcnt,S+=(i<=999);
for(re int j=1;j<=pcnt&&i*p[j]<=MX;j++)
np[i*p[j]]=1;
}
} //&Graph
veci e[P+10];
int E=1,to[(N<<1)+10];//---->同网络流思想,使互为反边的两条边通过^1可得
il void add(re int x,re int y){ //加双向边
e[x].push_back(++E),to[E]=y;
e[y].push_back(++E),to[E]=x;
}
il void Add(re int x){ // 把数转换为边
re int dcnt=0,div[4];
for(re int j=2;j<=pcnt&&p[j]*p[j]<=x;j++)
if(x%p[j]==0){
while(x%(p[j]*p[j])==0) x/=(p[j]*p[j]);
if(x%p[j]==0) div[++dcnt]=j,x/=p[j];
}
if(x>1) div[++dcnt]=ip[x],x=1;
if(dcnt==0) puts("1"),exit(0);
else if(dcnt==1) add(1,div[1]);
else add(div[1],div[2]);
}
int sz=inf,q[P+10][2],dep[P+10];
il void Bfs(re int s){ //以s为起点Bfs
fill(dep+1,dep+P+1,inf);
re int qcnt=0;
q[++qcnt][1]=s,dep[s]=0;
for(re int ft=1;ft<=qcnt;ft++){
re int x=q[ft][1],f=q[ft][0];
for(re int i:e[x])if(i!=(f^1)){
if(dep[to[i]]==inf){
dep[to[i]]=dep[x]+1;
q[++qcnt][1]=to[i];
q[qcnt][0]=i;
} else sz=min(sz,dep[x]+dep[to[i]]+1); //找到环
}
}
} //&Main
int main(){
Prime();
scanf("%d",&n);
for(re int i=1;i<=n;i++)
scanf("%d",a+i),Add(a[i]);
for(re int i=1;i<=S;i++) Bfs(i); //枚举起点
if(sz==inf) puts("-1");
else printf("%d\n",sz);
return 0;
}

祝大家学习愉快!

题解-Ehab's REAL Number Theory Problem的更多相关文章

  1. [E. Ehab's REAL Number Theory Problem](https://codeforces.com/contest/1325/problem/E) 数论+图论 求最小环

    E. Ehab's REAL Number Theory Problem 数论+图论 求最小环 题目大意: 给你一个n大小的数列,数列里的每一个元素满足以下要求: 数据范围是:\(1<=a_i& ...

  2. Number Theory Problem(The 2016 ACM-ICPC Asia China-Final Contest 找规律)

    题目: Mr. Panda is one of the top specialists on number theory all over the world. Now Mr. Panda is in ...

  3. Gym 101194A / UVALive 7897 - Number Theory Problem - [找规律水题][2016 EC-Final Problem A]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  4. A. Number Theory Problem

    题目大意:计算小于2^n,且满足2^k-1并且是7的倍数的个数 思路:优先打表,数据不大,1e5,然后求个前n项和 #include<bits/stdc++.h> using namesp ...

  5. Codeforces Round #525 (Div. 2)E. Ehab and a component choosing problem

    E. Ehab and a component choosing problem 题目链接:https://codeforces.com/contest/1088/problem/E 题意: 给出一个 ...

  6. Codeforces Round #525 (Div. 2)D. Ehab and another another xor problem

    D. Ehab and another another xor problem 题目链接:https://codeforces.com/contest/1088/problem/D Descripti ...

  7. 【BZOJ4026】dC Loves Number Theory 分解质因数+主席树

    [BZOJ4026]dC Loves Number Theory Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.    给 ...

  8. How to solve the SVDI SN Number Display Problem

    Yesterday we have learn how to find the SVDI Serial Number, today one of customer from UK look our a ...

  9. Codeforces 1088E Ehab and a component choosing problem

    Ehab and a component choosing problem 如果有多个连接件那么这几个连接件一定是一样大的, 所以我们先找到值最大的连通块这个肯定是分数的答案. dp[ i ]表示对于 ...

随机推荐

  1. MySQL慢查询开启、日志分析(转)

    说明 Mysql的查询讯日志是Mysql提供的一种日志记录,它用来记录在Mysql中响应时间超过阈值的语句 具体指运行时间超过long_query_time值得SQL,则会被记录到慢查询日志中.lon ...

  2. 手写atoi、strcpy、strcat

    一:实现atoi函数 1 #include<iostream> 2 3 using namespace std; 4 5 int atoi_my(const char *str) 6 { ...

  3. Java入门基础知识点总结(详细篇)

    Java入门基础知识点总结(详细篇)~~~~~目录 1.1 图解 1.1.1 Java基础知识点 1.1.2 Java基础语法的相关内容 1.2 关键字 1.3 标识符 1.3.1 标识符概念 1.3 ...

  4. Python_微信开发

    <!-- 发消息功能 --> 0.微信开发的2个库 pip install werobot pip install 1.新建项目 2.项目下新建 robot 的app 3.写robot.p ...

  5. Collectors工具类

    Collector是专门用来作为Stream的collect方法的参数的:而Collectors是作为生产具体Collector的工具类. Collectors是一个工具类,是JDK预实现Collec ...

  6. SixLabors.ImageSharp 实践小结

    前言 之前写过一篇 Linux/Docker 中使用 System.Drawing.Common 踩坑小计, 当时主要是有一块图像处理的需要从 .net framework 迁移到 .net core ...

  7. xdebug不显示

  8. 还不懂java类加载机制的,建议看下这份阿里技术官总结的笔记!

    类加载机制 把class文件加载到内存,并对数据进行校验,准备,解析,初始化,形成可以被虚拟机直接使用的字节码 类加载的时机(触发类的初始化) 使用new关键字实例化对象 读取一个类的静态代码块 使用 ...

  9. 新鲜出炉!JAVA线程池精华篇深度讲解,看完你还怕面试被问到吗?

    前言 前两天趁着假期在整理粉丝私信的时候看到一个粉丝朋友的私信跟我说自己现在正在复习准备面试,自己在复习到线程池这一块的时候有点卡壳,总感觉自己差了点什么.想要我帮他指导一下.这不趁着假期我也有时间我 ...

  10. 图像分割必备知识点 | Dice损失 理论+代码

    本文包含代码案例和讲解,建议收藏,也顺便点个赞吧.欢迎各路朋友爱好者加我的微信讨论问题:cyx645016617. 在很多关于医学图像分割的竞赛.论文和项目中,发现 Dice 系数(Dice coef ...