题目地址

题目简译:给定\(n\)个等差数列,每个等差数列的起点为\(s\),终点为\(e\),差为\(d\)。整个序列中至多有一个位置所占数字是奇数。判断奇数位是否存在,如果不存在输出"There's no weakness.",如果存在输出位置与大小。

温馨提示:\(⌊x⌋\)为将\(x\)向下取整

算法:前缀和 + 二分位置

1、奇数位存在性

整个序列中至多有一个位置的数字所占数量是奇数,所以如果存在奇数位,则整个数列的总和必然是奇数(奇数 + 偶数 = 奇数,偶数 + 偶数 = 偶数)。反之,若不存在奇数位,则一定是偶数。故只需判断数字数量的总和的奇偶性即可。

2、二分位置

若存在这个奇偶性,我们可以通过二分答案的位置来找到这个位置,然后判断区间\([l,mid]\)的总和的奇偶性。若为奇数,则奇数位存在于此区间。反之若为偶数,则一定存在于\([mid+1,r]\)区间。用这个方法逐步缩小范围即可。

关于查找\([l,mid]\)的总和,我们可以用前缀和的思路,用\(sum[n] - sum[mid-1]\)即可求出。(\(sum[i]\)为求出\(i\)位置之前所有位置的和)

3、\(O(n)\)时间求出区间\(sum[x]\)的数字个数

设整个数列的最小位置为\(minn\)

这里,我们枚举每一个等差数列(它的起点为\(s\),终点为\(e\),差为\(d\))。若\(s <= x\),则两区间存在交集。

则它与\([minn,x]\)的共同区间为\([s,min(e,x)]\)。那么此区间包含此数列的个数是\((⌊(min(e,x) - s) / d⌋ + 1\)。

正确性证明十分容易:

在此区间中存在一段区间,共\(⌊s,min(e,x) / d⌋ * d\)个位置,头尾的位置上都有数字,差为\(d\),则数字的数量就是\((⌊(min(e,x) - s) / d⌋ + 1\)。

时间复杂度:\(O(nlogn)\)

二分的时间为\(O(logn)\),每次\(check()\)的时间为\(O(n)\),故总的时间复杂度为\(O(nlogn)\)。

C++ 代码

#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
const int N = 200000 + 1, INF = 1e9;
int t,n;
struct node{
int s,e,d;
}a[N];
int getSum(int x){ // O(n) 求[1,x]的前缀和
int res = 0;
for(int i = 1; i <= n; i++)
if(a[i].s <= x)
res += (min(a[i].e, x) - a[i].s)/a[i].d + 1; return res;
}
bool check(int l,int r){ // O(n) 查找[l,r]是否存在奇数位
return (getSum(r) - getSum(l - 1)) & 1;
}
int main(){
cin >> t;
while(t--){
cin >> n;
int maxn = -INF, minn = INF;
for(int i = 1; i <= n; i++){
cin >> a[i].s >> a[i].e >> a[i].d;
minn = min(minn,a[i].s);
maxn = max(maxn,a[i].e);
} if(!(getSum(maxn) & 1)){
cout << "There's no weakness." << endl;
}else{
int l = minn, r = maxn;
while(l <= r){
int mid = (l + r) >> 1;
if(check(l,mid))r = mid - 1;
else l = mid + 1;
} cout << l << " " << (getSum(l) - getSum(l - 1)) << endl;
}
}
return 0;
}

Acwing 120. 防线的更多相关文章

  1. 【转】花开正当时,十四款120/128GB SSD横向评测

    原文地址:http://www.expreview.com/19604-all.html SSD横评是最具消费指导意义的评测文章,也是各类热门SSD固态硬盘的决斗疆场.SSD评测在行业内已经有不少网站 ...

  2. 【AcWing】周赛

    A.糖果 题目链接 链接 题目描述 给定三个正整数 a,b,c. 请计算 ⌊a+b+c2⌋,即 a,b,c 相加的和除以 2 再下取整的结果. 输入格式 第一行包含整数 T,表示共有 T 组测试数据. ...

  3. 120项改进:开源超级爬虫Hawk 2.0 重磅发布!

    沙漠君在历时半年,修改无数bug,更新一票新功能后,在今天隆重推出最新改进的超级爬虫Hawk 2.0! 啥?你不知道Hawk干吗用的? 这是采集数据的挖掘机,网络猎杀的重狙!半年多以前,沙漠君写了一篇 ...

  4. 防线修建 bzoj 2300

    防线修建(1s 512MB)defense [问题描述] 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还 ...

  5. Linux 日志报错 xxx blocked for more than 120 seconds

    监控作业发现一台服务器(Red Hat Enterprise Linux Server release 5.7)从凌晨1:32开始,有一小段时间无法响应,数据库也连接不上,后面又正常了.早上检查了监听 ...

  6. C语言执行时报错“表达式必须是可修改的左值,无法从“const char [3]”转换为“char [120]” ”,原因:字符串不能直接赋值

    解决该问题的方法:使用strcpy函数进行字符串拷贝   原型声明:char *strcpy(char* dest, const char *src); 头文件:#include <string ...

  7. INFO: task java:27465 blocked for more than 120 seconds不一定是cache太大的问题

    这几天,老有几个环境在中午收盘后者下午收盘后那一会儿,系统打不开,然后过了一会儿,进程就消失不见了,查看了下/var/log/message,有如下信息: Dec 12 11:35:38 iZ23nn ...

  8. JAVA经典算法40题(1-20)

    [程序1]   题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?   1.程序分析:   兔子的规律 ...

  9. task mysqld:26208 blocked for more than 120 seconds

    早上10点左右,某台线上ECS服务器突然没响应. 查看日志,发现如下信息: Aug 14 03:26:01 localhost rsyslogd: [origin software="rsy ...

随机推荐

  1. C++ Split string into vector<string> by space(转)

    c++中没有这么方便的实现,但也有很多的方法能实现这个功能,下面列出五种常用的实现的方法,请根据需要选择,个人觉得前三种使用起来比较方便,参见代码如下: #include <vector> ...

  2. shell编程之俄罗斯方块

    按键获取: 向上  ^[[A 向下  ^[[B 向左  ^[[D 向右  ^[[C 其中  ^[为ESC键. 按键获取的具体shell代码如下所示: #! /bin/bash GetKey() { a ...

  3. socket套接字(字节序、地址转换)

    什么是socket: socket可以看成是用户进程与内核网络协议栈的编程接口. socket不仅可以用于本机的进程间通信,还可以用于网络上 不同主机之间的进程通信.IPv4套接口地址结构 struc ...

  4. Angualr 内置工具-SelectionModel

    SelectionModel: 被用来控制选中一个和多个item时候的逻辑.例如下拉菜单,复选框选中等,非常方便. 引入:import{SelectionModel}from'@angular/cdk ...

  5. 8、Spring Boot任务

    1.异步任务 在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实,在Spring ...

  6. Sound Forge常规功能详解

    Sound Forge是一款有口皆碑的音频编辑软件,专为录音.母带处理和音频编辑开发.但是该如何使用Sound Forge呢,Sound Forge经常用到的功能有哪些呢?今天小编通过该文章给大家进行 ...

  7. iMindMap组织结构视图在工作上的应用体现在哪些方面

    iMindMap的组织结构图视图,可以将信息.想法和流程整合起来.本文,我们将讲述iMindMap组织结构图视图的3个实例应用. iMindMap组织结构视图 简化您的工作流程 通过在工作中构建组织结 ...

  8. 详解pdfFactory的页面管理功能

    当我们将文档载入到pdfFactory 之后才发现文档中存在着一些乱页现象.那么是否需要重新整理文档后,再重新载入到软件中呢?实际上,不需要. pdfFactory专业版提供了高效的页面管理功能,用户 ...

  9. 给git日志添加好看的样式

    windows添加如下命令,让入了全局环境里 git config --global alias.lg "log --color --graph --pretty=format:'%Cred ...

  10. Python基础整理,懒得分类了,大家对付看看吧

    第一次搞这么多图