1. word embedding

在NLP领域,首先要把文字或者语言转化为计算机能处理的形式。一般来说计算机只能处理数值型的数据,所以,在NLP的开始,有一个很重要的工作,就是将文字转化为数字,把这个过程称为 word embedding

word embedding即词嵌入,就是将一个词或者特征转化为一个向量。

      词嵌入一般有两种方式:最简单和原始的方式one-hot;word2vec方式。下面我们简单回顾一下one-hot方式,重点讲解word2vec词嵌入方式。

2. one-hot

one-hot的思想很简单,其长度为字典大小,每个维度对应一个字典里的每个词,除了这个词对应维度上的值是1,其他元素都是0。One-hot vector虽然简单,但是用处有限。当特征数量比较大的时候,one-hot向量就会很长。对于线性的分类器还好,但是模型一旦更加复杂,计算的复杂度就会很快的增长到我们无法承受的程度。同时,由于特征向量中不同维度之间是完全无关的,这就会导致特征向量无法刻画单词间的相似性,从而导致模型的泛化能力较差。

3. word2vec

        word2vec 也是word embedding的一种,它会将一个词映射到一个固定维度的向量中(不随语料的变化而变化),并且能够在一定程度上反映出词与词之间的关系。Word2vec是一个用于处理文本的双层神经网络。它的输入是文本语料,输出则是一组向量:该语料中词语的特征向量。虽然Word2vec并不是深度神经网络,但它可以将文本转换为深度神经网络能够理解的数值形式。

word2vec目前主要有两种模型,分别叫做 Skip-gramCBOW。从直观上理解,Skip-Gram是给定input word来预测上下文。而CBOW是给定上下文,来预测input word。接下来会分别介绍下这两种模型的大体思想

word2vec主要的实现方式有两种,分别为 Hierarchical SoftmaxNegative sampling。他们和 CBOWskip-gram 两两结合,共可以组成4种不同的模型。我们对基于Hierarchical Softmax的两种模型进行原理分析。

3.1 Skip-gram

      skip-gram 主要实现方式就是,通过输入一个词x,预测它的上下文的词。

文本信息:“我”, “想”, “学习”, “计算机”, “技术”

在这个例子中,就相当于当输入“学习”这个词的时候,要输出“我”,“想”,“计算机”,“技术”四个词(假设设定的窗口大小为5)。 具体结构如下图所示:

3.2 CBOW

    CBOW 的思想则和skip-gram相反,它是通过上下文的词,去预测当前的词。

文本信息:“学习计算机技术

在这个例子中,就相当于输入为上文“我”,“想”,和下文“计算机”,“技术”,要输出“学习”这个词(假设设定的窗口大小为5)。 具体结构如下:

3.3基于 Hierarchical Softmax 的 CBOW 实现方式及原理

该模型主要由3层组成

1) 第一层:

每一个输入项表示上下文中的词的2c个向量(假设窗口大小为5,则有4个输入,即c=2)

每个输入变量为一个m维的向量,即对应输入的词的词向量

2)第二层:

将上一层输入的2c个向量求和累加

3) 第三层:

输出层,输出为一个二叉树(Huffman树),对应一个叶子节点(每个叶子节点对应一个词,所以叶子节点共有D个,D表示词的种类数量)

那么输出层为什么要输出一个二叉树,以及它是怎么输出的一个二叉树。下面举一个例子:

当要输出 足球 这个词的时候,这个模型其实并不是直接输出 "1001" 这条路径,而是在每一个节点都进行一次二分类。

相当于将最后输出的二叉树变成多个二分类的任务。而路径中的每个根节点都是一个待求的向量。 也就是说这个模型不仅需要求每个输入参数的变量,还需要求这棵二叉树中每个非叶子节点的向量,当然这些向量都只是临时用的向量。

所以计算过程可以表示为概率的累乘。 分类的单元使用的是逻辑回归,公式如下:

被分为正类的概率:

被分为负类的概率:

上面公式中的θ即为二叉树中非叶子节点的临时参数。

以“足球”为例,从根节点到叶子节点要经过4个分类器,分别为:

所以可得到:

完整的公式可以表示为:

根据上面的公式可以得到对数似然函数为:

然后通过随机梯度上升法进行训练,更新输入的w

通过不断的计算和更新,最终得到的word2vec模型。

3.4基于 Hierarchical Softmax 的 Skip-gram 实现方式及原理

Skip-gram 的模式跟 CBOW 的基本一样,所以会结合上面的简略的说明一下。

同样也是由3层组成的。唯一的区别就是将第一层输入层输入变量从输入2c个值变为输入一个值。

Skip-gram的模型定义为:

即输出的所有上下文的概率之积。

在这里 P(u∣w)的计算方式就是跟CBOW中说到的一样。

所以可以得到最终的对数似然函数为:

接下来就是跟上面一样的使用随机梯度上升的方式,不断更新各项参数。最终得到最终的word2vec模型。

参考资料

https://www.read138.com/archives/732/f13js0re9wu6zyi7/

https://www.cnblogs.com/DjangoBlog/p/7903683.html

Mikolov T, Sutskever I, Chen K, et al.Distributed representations of words and phrases and theircompositionality[C]//Advances in neural information processing systems. 2013:3111-3119.

对Word2Vec的理解的更多相关文章

  1. 对word2vec的理解及资料整理

    对word2vec的理解及资料整理 无他,在网上看到好多对word2vec的介绍,当然也有写的比较认真的,但是自己学习过程中还是看了好多才明白,这里按照自己整理梳理一下资料,形成提纲以便学习. 介绍较 ...

  2. word2vec参数理解

    之前写了对word2vec的一些简单理解,实践过程中需要对其参数有较深的了解: class gensim.models.word2vec.Word2Vec(sentences=None,size=10 ...

  3. word2vec的理解

    在学习LSTM的时候,了解了word2vec,简单的理解就是把词变成向量.看了很多书,也搜索了很多博客,大多数都是在word2vec的实现原理.数学公式,和一堆怎么样重新写一个word2vec的pyt ...

  4. word2vec入门理解的博客整理

    深度学习word2vec笔记之基础篇 https://blog.csdn.net/mytestmy/article/details/26961315 深度学习word2vec笔记之算法篇 https: ...

  5. word2vec 的理解

    1.CBOW 模型 CBOW模型包括输入层.投影层.输出层.模型是根据上下文来预测当前词,由输入层到投影层的示意图如下: 这里是对输入层的4个上下文词向量求和得到的当前词向量,实际应用中,上下文窗口大 ...

  6. 文本分布式表示(二):用tensorflow和word2vec训练词向量

    看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/pegho ...

  7. word2vec之tensorflow(skip-gram)实现

    关于word2vec的理解,推荐文章https://www.cnblogs.com/guoyaohua/p/9240336.html 代码参考https://github.com/eecrazy/wo ...

  8. Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树

    Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 ...

  9. Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练

    Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练 目录 Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练 0x00 摘要 0x01 前文回顾 1.1 上文总体流程图 1 ...

随机推荐

  1. WPF 设置帧率

    开始仔细学习WPF了 说是动画不流畅,可以通过设置帧率解决,查了很多,都说设置Timeline.DesiredFrameRateProperty, 但都没说加到哪里,在代码很多地方加上了,统统无效.最 ...

  2. 龙芯开源社区上线.NET主页

    龙芯团队从2019年7 月份开始着手.NET Core的MIPS64支持研发,经过将近一年的研发,在2020年6月18日完成了里程碑性的工作,在github CoreCLR 仓库:https://gi ...

  3. alert(1) to win Part Ⅰ

    alert(1) to win Adobe: function escape(s) { s = s.replace(/"/g, '\\"'); return '<script ...

  4. Django之模型的_meta属性

    Python有反射机制,Django也不例外,也有很好的反射机制,每个Django模型都有一个属性_meta,_meta也有属性和方法,这些属性和方法反射出了模型的一些特性,如果_meta用的好的话, ...

  5. Java8——方法引用

    方法引用就是通过类名或方法名引用已经存在的方法来简化lambda表达式.那么什么时候需要用方法引用呢?如果lamdba体中的内容已经有方法实现了,我们就可以使用方法引用. 一.方法引用的三种语法格式 ...

  6. JVM详解之:运行时常量池

    目录 简介 class文件中的常量池 运行时常量池 静态常量详解 String常量 数字常量 符号引用详解 String Pool字符串常量池 总结 简介 JVM在运行的时候会对class文件进行加载 ...

  7. Maven如何利用父工程对版本进行统一管理

    项目开发中我们该怎么对项目依赖的版本进行统一管理呢 答:创建一个父级工程,让所有的业务模块都继承该父级工程,即所有的业务都为Module 在父级工程pom文件添加<dependencyManag ...

  8. LGV定理

    LGV定理用于解决路径不相交问题. 定理 有 \(n\) 个起点 \(1, 2, 3, ..., n\),它们 分别对应 要到 \(n\) 个终点 \(A, B, C, ..., X\),并且要求路径 ...

  9. 题解 洛谷 P4189 【[CTSC2010]星际旅行】

    一个比较直接的想法就是对每个点进行拆点,拆成入点和出点,限制放在入点和出点相连的边上,然后跑最大费用最大流即可. 但是这样复杂度无法接受,所以考虑模拟费用流来解决本题. 发现 \(H\) 都大于等于该 ...

  10. Centos 7 静态IP设置

    1.编辑 ifcfg-eth0 文件,vim 最小化安装时没有被安装,需要自行安装不描述. # vim /etc/sysconfig/network-scripts/ifcfg-eth0 2.修改如下 ...