A. Remainder

output

standard output

You are given a huge decimal number consisting of nn digits. It is guaranteed that this number has no leading zeros. Each digit of this number is either 0 or 1.

You may perform several (possibly zero) operations with this number. During each operation you are allowed to change any digit of your number; you may change 0 to 1 or 1 to 0. It is possible that after some operation you can obtain a number with leading zeroes, but it does not matter for this problem.

You are also given two integers 0≤y<x<n0≤y<x<n. Your task is to calculate the minimum number of operations you should perform to obtain the number that has remainder 10y10y modulo 10x10x. In other words, the obtained number should have remainder 10y10y when divided by 10x10x.

Input

The first line of the input contains three integers n,x,yn,x,y (0≤y<x<n≤2⋅1050≤y<x<n≤2⋅105) — the length of the number and the integers xxand yy, respectively.

The second line of the input contains one decimal number consisting of nn digits, each digit of this number is either 0 or 1. It is guaranteed that the first digit of the number is 1.

Output

Print one integer — the minimum number of operations you should perform to obtain the number having remainder 10y10y modulo 10x10x. In other words, the obtained number should have remainder 10y10y when divided by 10x10x.

Examples
input

Copy
11 5 2
11010100101
output

Copy
1
input

Copy
11 5 1
11010100101
output

Copy
3
Note

In the first example the number will be 1101010010011010100100 after performing one operation. It has remainder 100100 modulo 100000100000.

In the second example the number will be 1101010001011010100010 after performing three operations. It has remainder 1010 modulo 100000100000.

思路:只需要看需要的位数

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+;
typedef long long ll;
using namespace std; char a[*maxn];
int main()
{
int n,x,y;
cin>>n>>x>>y;
scanf("%s",a);
int sum=; for(int t=n-;t>=n-x;t--)
{
if(a[t]==''&&t!=n-y-)
{
continue;
}
else if(a[t]==''&&t!=n-y-)
{
sum++;
}
else if(a[t]==''&&t==n-y-)
{
continue;
}
else if(a[t]==''&&t==n-y-)
{
sum++;
}
}
printf("%d",sum);
return ;
}

B. Polycarp Training

Polycarp wants to train before another programming competition. During the first day of his training he should solve exactly 11 problem, during the second day — exactly 22 problems, during the third day — exactly 33 problems, and so on. During the kk-th day he should solve kk problems.

Polycarp has a list of nn contests, the ii-th contest consists of aiai problems. During each day Polycarp has to choose exactly one of the contests he didn't solve yet and solve it. He solves exactly kk problems from this contest. Other problems are discarded from it. If there are no contests consisting of at least kk problems that Polycarp didn't solve yet during the kk-th day, then Polycarp stops his training.

How many days Polycarp can train if he chooses the contests optimally?

Input

The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of contests.

The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤2⋅1051≤ai≤2⋅105) — the number of problems in the ii-th contest.

Output

Print one integer — the maximum number of days Polycarp can train if he chooses the contests optimally.

Examples
input

Copy
4
3 1 4 1
output

Copy
3
input

Copy
3
1 1 1
output

Copy
1
input

Copy
5
1 1 1 2 2
output

Copy
2

思路:优先队列

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
#include<vector> const int maxn=2e5+;
typedef long long ll;
using namespace std;
priority_queue<int,vector<int>,greater<int> >q;
int main()
{
int n,x;
cin>>n;
for(int i=;i<=n;i++)
{
cin>>x;
q.push(x);
}
int ans=;
for(int i=;;i++)
{
while(!q.empty())
{
x=q.top();q.pop();
if(x>=i)
{
x-=i;
ans=i;
break;
}
}
if(q.empty())
break;
}
cout<<ans;
}

C. Good String

Let's call (yet again) a string good if its length is even, and every character in odd position of this string is different from the next character (the first character is different from the second, the third is different from the fourth, and so on). For example, the strings good, string and xyyx are good strings, and the strings bad, aa and aabc are not good. Note that the empty string is considered good.

You are given a string ss, you have to delete minimum number of characters from this string so that it becomes good.

Input

The first line contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of characters in ss.

The second line contains the string ss, consisting of exactly nn lowercase Latin letters.

Output

In the first line, print one integer kk (0≤k≤n0≤k≤n) — the minimum number of characters you have to delete from ss to make it good.

In the second line, print the resulting string ss. If it is empty, you may leave the second line blank, or not print it at all.

Examples
input

Copy
4
good
output

Copy
0
good
input

Copy
4
aabc
output

Copy
2
ab
input

Copy
3
aaa
output

Copy
3

用队列模拟一下取不取的过程

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+;
typedef long long ll;
using namespace std;
char str[*maxn];
int main()
{
int n;
cin>>n;
scanf("%s",str+);
int sum=;
char ss=str[];
queue<char>q;
q.push(ss);
for(int t=;t<=n;t++)
{
if(sum%==&&str[t]==ss)
{
continue;
}
sum++;
ss=str[t];
q.push(str[t]);
}
if(sum%==)
{
sum--;
}
printf("%d\n",n-sum);
int cnt=;
while(!q.empty())
{
if(cnt==sum)
{
break;
}
cnt++;
printf("%c",q.front());
q.pop();
}
printf("\n"); return ;
}

D. Almost All Divisors

We guessed some integer number xx. You are given a list of almost all its divisors. Almost all means that there are all divisors except 11 and xx in the list.

Your task is to find the minimum possible integer xx that can be the guessed number, or say that the input data is contradictory and it is impossible to find such number.

You have to answer tt independent queries.

Input

The first line of the input contains one integer tt (1≤t≤251≤t≤25) — the number of queries. Then tt queries follow.

The first line of the query contains one integer nn (1≤n≤3001≤n≤300) — the number of divisors in the list.

The second line of the query contains nn integers d1,d2,…,dnd1,d2,…,dn (2≤di≤1062≤di≤106), where didi is the ii-th divisor of the guessed number. It is guaranteed that all values didi are distinct.

Output

For each query print the answer to it.

If the input data in the query is contradictory and it is impossible to find such number xx that the given list of divisors is the list of almost all its divisors, print -1. Otherwise print the minimum possible xx.

Example
input

Copy
2
8
8 2 12 6 4 24 16 3
1
2
output

Copy
48
4

前面有此题的思路和代码

E. Two Arrays and Sum of Functions

You are given two arrays aa and bb, both of length nn.

Let's define a function f(l,r)=∑l≤i≤rai⋅bif(l,r)=∑l≤i≤rai⋅bi.

Your task is to reorder the elements (choose an arbitrary order of elements) of the array bb to minimize the value of ∑1≤l≤r≤nf(l,r)∑1≤l≤r≤nf(l,r). Since the answer can be very large, you have to print it modulo 998244353998244353. Note that you should minimize the answer but not its remainder.

Input

The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of elements in aa and bb.

The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1061≤ai≤106), where aiai is the ii-th element of aa.

The third line of the input contains nn integers b1,b2,…,bnb1,b2,…,bn (1≤bj≤1061≤bj≤106), where bjbj is the jj-th element of bb.

Output

Print one integer — the minimum possible value of ∑1≤l≤r≤nf(l,r)∑1≤l≤r≤nf(l,r) after rearranging elements of bb, taken modulo 998244353998244353. Note that you should minimize the answer but not its remainder.

Examples
input

Copy
5
1 8 7 2 4
9 7 2 9 3
output

Copy
646
input

Copy
1
1000000
1000000
output

Copy
757402647
input

Copy
2
1 3
4 2
output

Copy
20

思考贡献次数和排序

注意取模

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
#include<vector> const int maxn=1e5+;
typedef long long ll;
using namespace std;
ll a[*maxn],b[maxn*];
bool cmp(int x,int y)
{
return x>y;
}
int main()
{
int n;
cin>>n;
for(int t=;t<n;t++)
{
scanf("%lld",&a[t]);
a[t]=(a[t]*(n-t)*(t+));
}
for(int t=;t<n;t++)
{
scanf("%lld",&b[t]);
}
sort(a,a+n);
sort(b,b+n,cmp);
ll ans=;
for(int t=;t<n;t++)
{ ans=(ans%+((a[t]%)*(b[t]%))%)%;
}
printf("%lld",ans); return ;
}

Codeforces Round #560 (Div. 3)A-E的更多相关文章

  1. Codeforces Round #560 (Div. 3) Microtransactions

    Codeforces Round #560 (Div. 3) F2. Microtransactions (hard version) 题意: 现在有一个人他每天早上获得1块钱,现在有\(n\)种商品 ...

  2. A. Remainder Codeforces Round #560 (Div. 3)

    A. Remainder Codeforces Round #560 (Div. 3) You are given a huge decimal number consisting of nn dig ...

  3. Codeforces Round #560 Div. 3

    题目链接:戳我 于是...风浔凌弱菜又去写了一场div.3 总的来说,真的是比较简单.......就是.......不开long long见祖宗 贴上题解-- A 给定一个数,为01串,每次可以翻转一 ...

  4. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  5. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  6. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  7. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  8. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  9. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

随机推荐

  1. Make Windows 10 Comfortable

    在 StartUp 目录中(在当前用户目录下), 创建.bat, 里面可以写希望登录指定的命令(如使用subst进行映射, 将常用的目录映射为磁盘驱动器) 在 %USERPROFILE%(也就是用户家 ...

  2. AI顶会

    自己如何学习CV paper with code(每周) 基石方向 1.image classification 这个肯定要关注,这个往往都是backbone https://paperswithco ...

  3. Zookeeper学习(一)

    一.Zookeeper理解与选举机制 ①Zookeeper理解 概念:Zookeeper 是一个开源的分布式协调服务框架 ,主要用来解决分布式集群中应用系统的一致性问题和数据管理问题 特点:Zooke ...

  4. C# ASP 异步存储数据

    1.异步委托 在导航栏接收到提交的请求后,调用个各子画面的保存答案方法,之后实例化委托 saveToDB . 当执行BeginInvoke后,服务器会另起线程执行saveToDB里的的方法,因为这里要 ...

  5. JS 与 jQery 的区别主要在于 DOM

    //目前正在学习前端阶段,把知识点整理.保存下来以便日后查看 首先引入jQery: 需要先引入css,再引入js: jQery需要在js前引入,再引入框架,最后才是js的引入:css也相同,先引入框架 ...

  6. 在阿里云托管kubernetes上利用 cert-manager 自动签发 TLS 证书[无坑版]

    前言 排错的过程是痛苦的也是有趣的. 运维乃至IT,排错能力是拉开人与人之间的重要差距. 本篇会记录我的排错之旅. 由来 现如今我司所有业务都运行在阿里云托管kubernetes环境上,因为前端需要对 ...

  7. TestLink使用指南

    TestLink安装上之后,局域网内用户可以登陆使用,下面介绍本软件的使用方式. 1.TestLink简介 TestLink是基于Web的开源测试管理工具,用户可以使用这个工具创建测试项目和测试用例, ...

  8. Android Failed to find layer (XXX/XXX.xxActivity#0) in layer parent (no-parent).

    报错: Failed to find layer (XXX/XXX.xxActivity#0) in layer parent (no-parent). 解决: 将该xxActivity复制一份到桌面 ...

  9. DFS【搜索1】

    DFS模板 void dfs(int depth)//depth表示当前的层数(或深度) { if(depth>n)//到达叶子节点,该路已走到尽头 return; for(int i=;i&l ...

  10. go chan 缓存与阻塞

    原文链接:Go语言第十一课 并发(三)Channel缓存与阻塞 Channel的缓存 前面介绍过channel的创建方法: channel_test := make(chan string) 其实它完 ...