搞了几天终于把这个给搞得差不多了,遇到的错误这里也记录一下:

一、配置【配置什么的300和512其实差不多,这里只举一个例子来分析一下】

 之前的文件修改什么的和300x300的一样:https://www.cnblogs.com/GrPhoenix/p/10018072.html

从自己训练的ssd_300_vgg模型开始训练ssd_512_vgg的模型

因ssd_300_vgg中没有block12,又因为block7,block8,block9,block10,block11,中的参数张量两个网络模型中不匹配,因此ssd_512_vgg中这几个模块的参数不从ssd_300_vgg模型中继承,因此使用checkpoint_exclude_scopes命令指出。

因为所有的参数均需要训练,因此不使用命令--trainable_scopes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1 #/bin/bash
 2 DATASET_DIR=/home/data/xxx/imagedata/xing_tf/train_tf/
 3 TRAIN_DIR=/home/data/xxx/model/xing300512_model/
 4 CHECKPOINT_PATH=/home/data/xxx/model/xing300_model/model.ckpt-60000   #加载的ssd_300_vgg模型
 5 python3 ./train_ssd_network.py \
 6        --train_dir=${TRAIN_DIR} \
 7        --dataset_dir=${DATASET_DIR} \
 8        --dataset_name=pascalvoc_2007 \
 9        --dataset_split_name=train \
10        --model_name=ssd_512_vgg \
11        --checkpoint_path=${CHECKPOINT_PATH} \
12        --checkpoint_model_scope=ssd_300_vgg \
13        --checkpoint_exclude_scopes=ssd_512_vgg/block7,ssd_512_vgg/block7_box,ssd_512_vgg/block8,ssd_512_vgg/block8_box,ssd_512_vgg/block9,ssd_512_vgg/block9_box,ssd_512_vgg/block10,ssd_512_vgg/block10_box,ssd_512_vgg/block11,ssd_512_vgg/b    lock11_box,ssd_512_vgg/block12,ssd_512_vgg/block12_box \
14        #--trainable_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_3    00_vgg/block10_box,ssd_300_vgg/block11_box \
15        --save_summaries_secs=28800 \
16        --save_interval_secs=28800 \
17        --weight_decay=0.0005 \
18        --optimizer=adam \
19        --learning_rate_decay_factor=0.94 \
20        --batch_size=16 \
21        --num_classes=4 \
22        -gpu_memory_fraction=0.8 \

另外由300转512后还需修改:

1. 首先修改ssd_vgg_512.py的训练类别

2.修改train_ssd_network.py的model_name

修改为ssd_512_vgg

3. 修改nets/np_methods.py

修改:将300改为512, 将类别改为自己数据的类别(+背景)

4. 修改preprocessing/ssd_vgg_preprocessing.py

修改:将300改为512

5. 修改ssd_notbook.ipynb

a  将文件中数字“300”改为“512”

其他修改可以参考:http://blog.csdn.net/liuyan20062010/article/details/78905517

二、我遇到的错误:

InvalidArgumentError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a mismatch between the current graph and the graph from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:

Assign requires shapes of both tensors to match. lhs shape= [84] rhs shape= [8]
[[{{node save/Assign_20}} = Assign[T=DT_FLOAT, _class=["loc:@ssd_512_vgg/block12_box/conv_cls/biases"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](ssd_512_vgg/block12_box/conv_cls/biases, save/RestoreV2/_41)]]
[[{{node save/RestoreV2/_104}} = _Send[T=DT_FLOAT, client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_110_save/RestoreV2", _device="/job:localhost/replica:0/task:0/device:CPU:0"](save/RestoreV2:52)]]

  这类的问题本质上来说还是自己的配置不对,这个问题我查了很久,最后发现实在是太simpleT-T。

  我的问题的话:在从300转到512的时候忘记改ssd_vgg_512.py的类别导致test的时候文件配置和训练的tensor  shape不匹配TT...

SSD-Tensorflow 512x512 训练配置的更多相关文章

  1. 【目标检测】SSD+Tensorflow 300&512 配置详解

    SSD_300_vgg和SSD_512_vgg weights下载链接[需要科学上网~]: Model Training data Testing data mAP FPS SSD-300 VGG-b ...

  2. Tensorflow开发环境配置及其基本概念

    Tensorflow开发环境配置及其基本概念 1.1. 安装Tensorflow开发环境 1.1.1. 安装pycharm 1.1.2. 安装pythe3.6 1.1.3. 安装Tensorflow ...

  3. 在 C/C++ 中使用 TensorFlow 预训练好的模型—— 直接调用 C++ 接口实现

    现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直 ...

  4. 在 C/C++ 中使用 TensorFlow 预训练好的模型—— 间接调用 Python 实现

    现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过 ...

  5. 安装 tensorflow 1.1.0;以及安装其他相似版本tensorflow遇到的问题;tensorflow 1.13.2 cuda-10环境变量配置问题;Tensorflow 指定训练时如何指定使用的GPU;

    # 安装 2.7 环境conda create -n python2. python= conda activate python2. # 安装 1.1.0 gpu版本pip # 配置环境变量expo ...

  6. 利用阿里云容器服务打通TensorFlow持续训练链路

    本系列将利用Docker和阿里云容器服务,帮助您上手TensorFlow的机器学习方案 第一篇:打造TensorFlow的实验环境 第二篇:轻松搭建TensorFlow Serving集群 第三篇:打 ...

  7. 在C#下使用TensorFlow.NET训练自己的数据集

    在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分 ...

  8. Tensorflow使用环境配置

    windows中不能直接使用Tensorflow,所以得费点劲.(2016.11.29更新,TensorFlow 0.12 中已加入初步的 Windows 原生支持) 先是直接使用了<Deep ...

  9. Ubuntu 14.04 关于 TensorFlow 环境的配置

    Ubuntu 14.04 关于 TensorFlow 环境的配置   本教程截图于 TensorFlow 官方文档中文版  https://github.com/jikexueyuanwiki/ten ...

随机推荐

  1. Spark初探

    Apache Spark是一个针对大规模数据的快速.统一处理引擎. One stack rule them all 1-Stream Processing :spark Streaming 2-Ad- ...

  2. C 语言学习 -1

    头文件  stdio.h stdlib.h sting.h 先学习上面三个头文件: 1: stdio.h  这个头文件包含了 程序与外界数据交互的各种函数 说白了就是    用来处理     输入/输 ...

  3. maven项目的运行方式,maven私服的上传下载

    一.maven项目父子工程的运行方式 1.通过父项目的plugin下集成的tomacat run启动 2.通过自身项目的tomcat plugin启动,但前提是所依赖的项目必须全部都install(将 ...

  4. Python爬虫开发:反爬虫措施以及爬虫编写注意事项

  5. 【NBA 可视化】使用Pyecharts实现湖人19-20赛季投篮数据可视化~

    前言 先来口号 「湖人总冠军」~

  6. 树上的等差数列 [树形dp]

    树上的等差数列 题目描述 给定一棵包含 \(N\) 个节点的无根树,节点编号 \(1\to N\) .其中每个节点都具有一个权值,第 \(i\) 个节点的权值是 \(A_i\) . 小 \(Hi\) ...

  7. 反制面试官 | 14张原理图 | 再也不怕被问 volatile!

    反制面试官 | 14张原理图 | 再也不怕被问 volatile! 悟空 爱学习的程序猿,自主开发了Java学习平台.PMP刷题小程序.目前主修Java.多线程.SpringBoot.SpringCl ...

  8. Mybatis 循环删除/插入

    <foreach collection="array" open="(" separator="," close=")&qu ...

  9. JAVA 读取excel文件成List<Entity>

    package com.fsinfo.common.utils; import com.fsinfo.modules.enterprise.entity.EnterpriseRecordEntity; ...

  10. python基础 Day9

    python Day9 函数的初识 #代码的可读性较好 s=[1,2,3,4,5,5] def list_len(S): count=0 for i in s: count+=1 print(coun ...