题目大意

洛谷链接

有一个数列A已知对于所有的\(A[i]\)都是\(1~n\)的自然数,并且知道对于一些\(A[i]\)不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 \(mod\ 1000000007\)的值。

输入格式

第一行三个整数\(n,m,k\)分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。

接下来\(k\)行,每行两个正整数\(x,y\)表示\(A[x]\)的值不能是\(y\)。

输出格式

一行一个整数表示所有可能的数列的积的和对\(1000000007\)取模后的结果。如果一个合法的数列都没有,答案输出\(0\)。

样例输入

3 4 5

1 1

1 1

2 2

2 3

4 3

样例输出

90

样例解释

\(A[1]\)不能取\(1\)

\(A[2]\)不能取\(2、3\)

\(A[4]\)能取\(3\)

所以可能的数列有以下\(12\)种

第一行为数列

第二行为积

2 1 1 1

2

2 1 1 2

4

2 1 2 1

4

2 1 2 2

8

2 1 3 1

6

2 1 3 2

12

3 1 1 1

3

3 1 1 2

6

3 1 2 1

6

3 1 2 2

12

3 1 3 1

9

3 1 3 2

18

思路

从一般到特殊,如果没有不能选的限制,因为每个元素可以把范围内每个数取到,可以得到结果是:

\(( \sum_{1\le k\le n}k)^m\)

然而题目中提到有些元素的有些取值取不到,那么对应的元素的总价值把这些取值都减去再乘进去就可以了。剩下的没有动的元素直接累乘,注意要用到快速幂。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=100000+5;
const long long mod=1e9+7;
map<pair<ll,ll>,ll> a;//学lc大佬用的pair...其实用结构体也可
map<ll,ll> b;
ll n,m,k,cnt;
ll vis[maxn]; ll qpow(ll now,ll x){//快速幂的板子
ll vis=now%mod,res=1;
while(x){
if(x&1){
res*=(vis%mod);
res%=mod;
}
vis*=(vis%mod);
vis%=mod;
x>>=1;
}
return res;
} int main(){
scanf("%lld%lld%lld",&n,&m,&k);
ll sum=(n+1)*n/2; for(ll i=1;i<=k;i++){
ll x,y;
scanf("%lld%lld",&x,&y);
if(!b[x])vis[++cnt]=x;
if(a[make_pair(x,y)])continue;//样例给出了重复限制,所以记一下
a[make_pair(x,y)]=1;
b[x]+=y;//记录限制的总和
} ll ans=1;
for(ll i=1;i<=cnt;i++){
ans*=(sum-b[vis[i]])%mod;
ans%=mod;
} printf("%lld\n",((ans%mod)*qpow(sum,m-cnt)%mod)%mod);
return 0;
}

【数论】HAOI2012 容易题的更多相关文章

  1. 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂

    [bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...

  2. 洛谷 P2220 [HAOI2012]容易题 数论

    洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...

  3. BZOJ 2751: [HAOI2012]容易题(easy) 数学

    2751: [HAOI2012]容易题(easy) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2751 Description 为了使 ...

  4. BZOJ2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 872  Solved: 377[Submit][S ...

  5. BZOJ 2751: [HAOI2012]容易题(easy)( )

    有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂. ------------------------------------------- ...

  6. 2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1087  Solved: 477[Submit][ ...

  7. [HAOI2012] 容易题[母函数]

    794. [HAOI2012] 容易题 ★★☆   输入文件:easy.in   输出文件:easy.out   简单对比时间限制:1 s   内存限制:128 MB 秒 输入:easy.in 输出: ...

  8. 【bzoj2751】[HAOI2012]容易题(easy) 数论,简单题

    Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪 ...

  9. P2220 [HAOI2012]容易题[小学数学]

    题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定 ...

随机推荐

  1. 5.AVStream和AVCodecParameters

    AVStream和AVCodecParameters 说明: AVStream 结构表示当前媒体流的上下文,着重于所有媒体流共有的属性(并且是在程序运行时才能确定其值)和关联其他结构的字段. 其中co ...

  2. [03] C# Alloc Free编程

    C# Alloc Free编程 首先Alloc Free这个词是我自创的, 来源于Lock Free. Lock Free是说通过原子操作来避免锁的使用, 从而来提高并行程序的性能; 与Lock Fr ...

  3. Java反射库介绍

    本文主要罗列了Java反射中使用比较多的一些方法,主要都是来自 java.lang.reflect包下的Field.Method 和 Constructor 等三个类,希望对大家有帮助!! 介绍 ja ...

  4. Python3 学习笔记之 数据类型

  5. 痞子衡嵌入式:MCUXpresso IDE下添加C++源文件进SDK工程编译的方法

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是MCUXpresso IDE下添加C++源文件进SDK工程编译的方法. 最近有客户反映在MCUXpresso IDE下的SDK工程里添加 ...

  6. 栈的Java实现-分别使用数组和链表

    栈是非常重要的数据结构,栈具有后进先出的特点. 在JVM内部,每个线程维护一个栈,对于每个方法调用,入栈一个元素,成为栈帧,当方法执行完成后,对应的栈帧出栈. 栈帧中,也包含一个栈,称为操作数栈. 一 ...

  7. GO练习题

    package main import( "fmt" ) func list(n int) { for i := 0; i <= n; i++ { fmt.Printf(&q ...

  8. LazySysAdmin 靶机渗透

    Vulnhub-LazySysAdmin 靶机渗透 发现六个开放的端口,分别为22,80,139,445,3306以及6667. 139/tcp open netbios-ssn Samba smbd ...

  9. 吴恩达-机器学习+Logistic回归分类方案

  10. BUUCTF[归纳]sql注入相关题目

    这是我自己对于sql注入的部分ctf题型的归纳,均来自buuctf的平台环境. [0CTF 2016]piapiapia 我尝试了几种payload,发现有两种情况. 第一种:Invalid user ...