题面照例十分暴力,我再次重写一下吧……

题目描述

有\(n\)个数构成的数列\(A\)元素为\(a_i\),你要构造一个数列\(B\),元素为\(b_i\),使得满足\(b_{i}>0,a_{i}-k\leq b_{i}\leq a_{i}\)使得去除\(f\)个元素后\(b_i\)有公约数\(g\)。一个测试点有多组测试数据,当一个测试点的所有测试数据都与标准答案相同时,该测试点得分。

输入格式

第一行一个整数\(T\),表示数据组数。

对于下面的每一组数据:

第一行,三个整数\(n,k,f\),n表示数列元素个数。

第二行,n个整数\(a_{i}\),表示一个数列。

数据范围

设\(A=max_{a_{i}}\)。

测试点编号 \(n,k,f,A\) \(T\)
\(1,2,3,4,5,6\) \(\leq 10\) \(\leq 3\)
\(7,8,9,10\) \(\leq 3\times 10^3,f=0\) \(\leq 3\)
\(11,12\) \(\leq 5\times 10^3\) \(\leq 3\)
\(13,14\) \(\leq 3\times 10^4\) \(\leq 3\)
\(15,16\) \(\leq 5\times 10^4\) \(\leq 3\)
\(17,18\) \(\leq 5\times 10^5\) \(\leq 3\)
\(19,20\) \(\leq 2\times 10^6\) \(\leq 2\)

题解

30分做法

纯暴力啊……其实我也不知道这30分暴力该怎么写……

60分做法

首先得把这个问题转化成一个可以处理的东西。如果对题意进行归纳后就不难发现,这道题中当\(g\)满足要求时,\(a_{i}<g\ 或\ a_{i}\ mod\ g>k\ 的个数\leq f\)。所以在1至\(A\)中枚举\(g\),根据上述要求判断\(g\)是否符合要求。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e6+10,inf=0x7fffffff;
int a[maxn];
int t,n,k,f;
int main()
{
int i,j,l,r,g,num,flag;
cin>>t;
while(t--)
{
cin>>n>>k>>f;r=-inf;
for(i=1;i<=n;i++){scanf("%d",&a[i]);r=max(r,a[i]);}
//for(g=1;g<=k+1;g++){printf("%d ",g);}
for(g=1;g<=r;g++)
{
num=0;flag=1;
for(i=1;i<=n;i++){if(a[i]%g>k||a[i]/g==0){num++;if(num>f){flag=0;break;}}}
if(flag){printf("%d ",g);}
}
cout<<endl;
}
return 0;
}

100分做法

考虑优化上述查找过程。

注意发现\(A\)的范围较小,可以使用前缀和。这样就可以统计出满足\(a_{i}\in [l,r]\)的个数了。仍然暴力枚举\(g\),每次统计出满足\(a_{i}\in [k\cdot g+k+1,(k+1)\cdot g]\)的个数并相加,判断其是否大于f即可。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=3e6+10,inf=0x7fffffff;
int a[maxn],s[maxn];
int t,n,k,f;
template<typename T>void read(T &x)
{
x=0;int f=1;char ch;ch=getchar();
while(!isdigit(ch)){if(ch=='-'){f=-1;}ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
if(f==-1){x=-x;}
}
int main()
{
int i,j,r,tmp,num,hd,rr,g;
cin>>t;
while(t--)
{
cin>>n>>k>>f;r=-inf;
memset(a,0,sizeof(a));
for(i=1;i<=n;i++){read(tmp);a[tmp]++;r=max(r,tmp);}
for(i=1;i<=r;i++){s[i]=s[i-1]+a[i];}
for(g=1;g<=r;g++)
{
num=s[g-1];
for(i=g;num<=f&&i+k+1<=r;i+=g)
{
hd=i+k+1;rr=min(r,i+g-1);
if(hd<=rr){num+=(s[rr]-s[hd-1]);}
}
if(num<=f){printf("%d ",g);}
}cout<<endl;
}
return 0;
}

SCZ 20170812 T2 MFS的更多相关文章

  1. SCZ 20170812 T1 HKJ

    因为题面实在是太过暴力,就不贴链接了--我自己重新写一下题面吧-- 题目描述 给定一张带权有向图,设起点为1,终点为n,每个点除编号外还有一个序号,要求输出从起点至终点的最短路经过的点的序号和最短距离 ...

  2. [Noip2016]蚯蚓 D2 T2 队列

    [Noip2016]蚯蚓 D2 T2 Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯 ...

  3. T2 Func<in T1,out T2>(T1 arg)

    委托调用方法的4种方式. using System; using System.Collections.Generic; namespace ConsoleApplication1 { delegat ...

  4. Hotelling T2检验和多元方差分析

    1.1 Hotelling T2检验 Hotelling T2检验是一种常用多变量检验方法,是单变量检验的自然推广,常用于两组均向量的比较. 设两个含量分析为n,m的样本来自具有公共协方差阵的q维正态 ...

  5. bzoj4034: [HAOI2015]T2

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2684  Solved: 843 Description 有一 ...

  6. 【BZOJ 4517】【SDOI 2016 Round1 Day2 T2】排列计数

    本蒟蒻第一次没看题解A的题竟然是省选$Round1$ $Day2$ $T2$ 这道组合数学题. 考试时一开始以为是莫队,后来想到自己不会组合数的一些公式,便弃疗了去做第三题,,, 做完第三题后再回来看 ...

  7. MooseFs-分布式文件系统系列(四)之简单聊聊MFS的日常维护

    回顾 文件或目录的额外属性(noower,noattracache和noentrycache),可以通过MFS提供的命令(mfsgeteattr,mfsseteattr,mfsdeleattr等)检查 ...

  8. MFS文件系统

    一.MFS文件系统概论 MFS是linux下的开源存储系统,是由波兰人开发的.MFS文件系统能够实现RAID的功能,不但能够节约存储成本,而且不逊于专业的存储系统,能够实现在线扩展.MFS是一种半分布 ...

  9. NOIP欢乐模拟赛 T2 解题报告

    小澳的坐标系 (coordinate.cpp/c/pas) [题目描述] 小澳者表也,数学者景也,表动则景随矣. 小澳不喜欢数学,可数学却待小澳如初恋,小澳睡觉的时候也不放过. 小澳的梦境中出现了一个 ...

随机推荐

  1. WPF学习笔记02_布局

    布局原则 WPF窗口只能包含单个元素.如果要放置多个元素,需要放置一个容器,然后在容器中添加元素. 不应显示的设定元素的尺寸 不应该使用屏幕坐标指定元素的位置 布局容器的子元素"共享&quo ...

  2. 利用DES,C#加密,Java解密代码

    //C#加密 /// <summary> /// 进行DES加密. /// </summary> /// <param name="pToEncrypt&quo ...

  3. 【Dart】语言概述

    // 导入(import) // 导入核心库 //导入外部库 import 'package:test_api/test_api.dart'; // 导入文件 //import 'path/test. ...

  4. Java基础进阶类名整理

    类名综合 数学类: Math:数学运算 BigDecimal:用于精确计算数据 数组工具类: Arrays:数组工具类,用于对数组的操作 时间操作: JDK8以前: Date:表示一个时间,并面向对象 ...

  5. 【Linux】iptables的内核模块问题大坑!

    系统环境 CentOS 6.5 今天本来可以平静的度过一天,正品味着下午茶的美好,突然接到防火墙iptables的报警. 进入到服务器中,执行下面的命令查看,结果报错 /etc/init.d/ipta ...

  6. 【Oracle】查询锁的相关SQL

    --查看有锁的进程 select t2.username,t2.sid,t2.serial#,t2.logon_time,t2.state from v$locked_object t1,v$sess ...

  7. Loadrunner参数化数据配置与更新方式

    之前遇到过一种情况,对脚本进行并发测试时,脚本没有报错,但是有丢失的事物,与开发配合检查确定不是代码的问题,然后检查脚本,更换参数化数据配置与更新方式,问题解决.现在对参数化数据配置和更新方式进行总结 ...

  8. Goby资产扫描工具安装及报错处理

    官网: https://cn.gobies.org/index.html 产品介绍: 帮企业梳理资产暴露攻击面,新一代网络安全技术,通过为目标建立完整的资产数据库,实现快速的安全应急. 已有功能: 扫 ...

  9. Promise.all()使用实例

    一.什么是Promise.all()? 在说这个之前要先说清楚promise.promise就是一个对象,专门用来处理异步操作的. 而Promise.all方法用于将多个 Promise 实例,包装成 ...

  10. 微服务网关1-Spring Cloud Gateway简介

    一.网关基本概念 1.API网关介绍 ​ API 网关出现的原因是微服务架构的出现,不同的微服务一般会有不同的网络地址,而外部客户端可能需要调用多个服务的接口才能完成一个业务需求,如果让客户端直接与各 ...