Zju1100 Mondriaan
题目描述
有一个m行n列的矩阵,用1*2的骨牌(可横放或竖放)完全覆盖,骨牌不能重叠,有多少种不同的覆盖的方法? 你只需要求出覆盖方法总数mod p的值即可。
输入格式
三个整数数n,m,p,m<=5,p<=10000,n<=10000
输出格式
一个整数:总数模p的结果
不难想到可以用状压来做这题。设dp(i,j)表示第i列放置情况为j的二进制表示,其中j的第k位为1时表示这玩意是一块竖着的骨牌的上半部分,为0则是其余的情况。我们考虑一下dp(i,j)可以由哪些状态转移而来。
设上一行的二进制表示为j,当前一行的为k。由于当j的某些位置为1时,k的这些位置也必须为1。为了在满足我们的定义的同时把j的1给转移下来,我们可以将j和k做一次按位或运算。此时数j|k中为0的部分就是放横着的骨牌的地方。显然j|k中为0的连续部分长度必须是偶数。所以我们转移的第一个条件就是:
1.j|k的每一段连续0的长度都必须为偶数
如果上一行的某一位是1,而当前一行的这一位也是1,那么不合法,不能转移。所以我们的第二个转移的条件就是:
2.j和k的相同位置不能都为1
怎么判断两个条件呢?
对于第二个条件,我们可以将j和k做一次按位与运算,如果得到的数不为0,即得到的数里面含有1,那么不合法:
if(j&k) continue;
对于第一个条件,我们只好O(m)地慢慢转移:
int odd=0,cnt=0;
for(register int l=0;l<m;l++)
if((j|k)>>l&1) odd|=cnt,cnt=0;
else cnt^=1;
if(odd|cnt) continue;
所以我们得到了一个时间复杂度为O(NM * 2^M * 2^M)=O(NM * 4^M)的算法。
#include<iostream>
#include<cstring>
#include<cstdio>
#define maxm 5
#define maxn 10001
using namespace std;
int dp[maxn][1<<maxm];
int n,m,p;
inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int main(){
n=read(),m=read(),p=read();
dp[0][0]=1;
for(register int i=1;i<=n;i++){
for(register int j=0;j<1<<m;j++){
for(register int k=0;k<1<<m;k++){
if(j&k) continue;
int odd=0,cnt=0;
for(register int l=0;l<m;l++)
if((j|k)>>l&1) odd|=cnt,cnt=0;
else cnt^=1;
if(odd|cnt) continue;
(dp[i][j]+=dp[i-1][k])%=p;
}
}
}
printf("%d\n",dp[n][0]);
return 0;
}
这个复杂度足够通过本题了。
对于这个算法有个小小的优化:
设函数f(j,k)=j|k,不难发现其定义域大小为2M2=4M而值域大小只有2M,所以我们对于一个f(j,k)其实重复算了2^M次。所以我们可以预处理出所有f(j,k):
for(register int i=0;i<1<<m;i++){
int odd=0,cnt=0;
for(register int j=0;j<m;j++)
if(i>>j&1) odd|=cnt,cnt=0;
else cnt^=1;
even[i]=odd|cnt?0:1;
}
然后在dp的过程中:
dp[0][0]=1;
for(register int i=1;i<=n;i++){
for(register int j=0;j<1<<m;j++){
for(register int k=0;k<1<<m;k++){
if(!(j&k)&&even[j|k]) (dp[i][j]+=dp[i-1][k])%=p;
}
}
}
可以把时间复杂度优化成O(N * 4^M+M * 2^M)
Zju1100 Mondriaan的更多相关文章
- [poj2411] Mondriaan's Dream (状压DP)
状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...
- POJ 题目2411 Mondriaan's Dream(状压DP)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 13519 Accepted: 787 ...
- POJ 2411 Mondriaan's Dream
状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...
- POJ2411 Mondriaan's Dream
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
- 状压DP POJ 2411 Mondriaan'sDream
题目传送门 /* 题意:一个h*w的矩阵(1<=h,w<=11),只能放1*2的模块,问完全覆盖的不同放发有多少种? 状态压缩DP第一道:dp[i][j] 代表第i行的j状态下的种数(状态 ...
- HDU 1400 (POJ 2411 ZOJ 1100)Mondriaan's Dream(DP + 状态压缩)
Mondriaan's Dream Problem Description Squares and rectangles fascinated the famous Dutch painter Pie ...
- poj 2411 Mondriaan's Dream(状态压缩dp)
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
- poj 2411 Mondriaan's Dream 【dp】
题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...
- POJ2411 Mondriaan's Dream(状态压缩)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 15295 Accepted: 882 ...
随机推荐
- Hadoop核心-HDFS
上一篇我们熟悉了hadoop,本篇讲解一下hadoop第一个核心HDFS. 一.概述 HDFS是一个分布式文件存储系统,以流式数据访问模式存储超大文件,将数据分块存储到一个商业硬件集群内的不同机器上, ...
- PHP文件包含及使用伪协议getshell
file:// - 访问本地文件系统 http:// - 访问 HTTP(s) 网址 ftp:// - 访问 FTP(s) URLs php:// - 访问各个输入/输出流(I/O streams) ...
- 5行Python代码就能实现刷爆全网的动态条形图!
说起动态图表,最火的莫过于动态条形图了. 在B站上搜索「数据可视化」这个关键词,可以看到很多与动态条形图相关的视频. 好多视频都达到了上百万的播放量,属实厉害. 目前网上实现动态条形图现成的工具也很多 ...
- matlab练习程序(正态分布贝叶斯分类)
clear all;close all;clc; randn('seed',0);mu1=[0 0];S1=[0.3 0;0 0.35];cls1_data=mvnrnd(mu1,S1,1000);p ...
- java基础:进制详细介绍,进制快速转换,二维数组详解,循环嵌套应用,杨辉三角实现正倒直角正倒等腰三角,附练习案列
1.Debug模式 1.1 什么是Debug模式 是供程序员使用的程序调试工具,它可以用于查看程序的执行流程,也可以用于追踪程序执行过程来调试程序. 1.2 Debug介绍与操作流程 如何加断点 选择 ...
- 安装篇九:安装wordpress(5.4版本)
#1.下载wordpress程序 下载部署wordpress博客程序(https://cn.wordpress.org/ 英文官网:https://www.wordpress.org/ ) [root ...
- Excel 数据对比,窗口并列排序操作(xlw文件格式的由来)
步骤1:打开Excel文件,输入一些数据 步骤2:点击视图,创建新窗口(这里就会创建一个和步骤1一抹一样的的表格,我们可以在任务栏上看到) 第三步:点击视图里面的全部重排按钮,在重拍窗口里面选择需要拍 ...
- SQL Server中datetimeset转换datetime类型问题浅析
在SQL Server中,数据类型datetimeoffset转换为datetime类型或datetime2类型时需要特别注意,有可能一不小心你可能会碰到下面这种情况.下面我们构造一个简单案例,模拟一 ...
- HashMap的循环姿势你真的掌握了吗?
hashMap 应该是java程序员工作中用的比较多的一个键值对处理的数据的类型了.这种数据类型一般都会有增删查的方法,今天我们就来看看它的循环方法以前写过一篇关于ArrayList的循环效率问题&l ...
- JDBC数据库删除
1 //删除操作: 2 3 if(conn != null){ 4 String temps="2"; 5 conn.setAutoCommit(false); 6 Prepare ...