隐语义模型LFM
隐语义模型是通过隐含特征,联系用户和物品,基于用户的特征对物品进行自动聚类,然后在用户感兴趣的类中选择物品推荐给用户。
对于推荐系统,常用的算法:
USER-CF:给用户推荐和他兴趣相似的用户喜欢的物品
ITEM-CF:给用户推荐他们感兴趣物品的相似物品
LFM:得到用户感兴趣的分类,从该分类中挑选物品推荐给用户
对于LFM,要做的工作有:
1.对物品进行分类,这里是模糊分类,也就是得出每个物品在每个类中的权重,并不是说一个物品就是属于一个类
2.确定用户感兴趣的类,这里要计算用户对所有类的兴趣度
3.从类中挑选物品给用户推荐,根据1,2结果相乘,得出用户对所有物品的兴趣度,进行排序,得出结果
公式:

其中R是用户u对物品i的兴趣度组成的矩阵
P是用户u对第k个类的兴趣度组成的矩阵
Q是物品i在第k个类中的权重
一图胜千言:

可以看出,协同过滤是基于统计的,不需要有学习过程,可以实时得出。而隐语义模型是基于建模的,根据训练集,计算出上图中的全部参数,有训练过程,无法实时给出结果。
损失函数:

其中后两项为L2正则化项,防止过拟合
求解可以用梯度下降:
梯度:

迭代求解:

隐语义模型中负样本的选择
1)对每个用户,要保证正负样本的数目相近
2)对每个用户采样负样本时,要选取那些很热门,而用户却没有行为的物品。(更代表用户对该物品不感兴
趣)
参数:
1.隐特征个数,也就是类个数f
2.学习率∂
3.正则化参数λ
相对CF,LFM的空间复杂度更低
隐语义模型LFM的更多相关文章
- 推荐系统第5周--- 基于内容的推荐,隐语义模型LFM
基于内容的推荐
- 推荐系统--隐语义模型LFM
主要介绍 隐语义模型 LFM(latent factor model). 隐语义模型最早在文本挖掘领域被提出,用于找到文本的隐含语义,相关名词有 LSI.pLSA.LDA 等.在推荐领域,隐语义模型也 ...
- 推荐系统之隐语义模型(LFM)
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣 ...
- 推荐系统之隐语义模型LFM
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣 ...
- 隐语义模型LFM(latent factor model)
对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品.总结一下,这个基于兴趣分类的方法大概需要解决3个问题. 如何给物品进行分类? 如何确定用户对哪些类的物品感兴趣,以及感兴趣的程度? ...
- 【转载】使用LFM(Latent factor model)隐语义模型进行Top-N推荐
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...
- 使用LFM(Latent factor model)隐语义模型进行Top-N推荐
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...
- 海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis
http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- LFM 隐语义模型
隐语义模型: 物品 表示为长度为k的向量q(每个分量都表示 物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示 用户对某个特征的喜好程度) 用户u对物品i的兴趣 ...
随机推荐
- 【刷题笔记】DP优化-状压
因为篇幅太长翻着麻烦,计划把DP拆成几个小专题,这里原文只留下状压,其他请至后续博文. 状态压缩优化 所谓状态压缩,就是将原本需要很多很多维来描述,甚至暴力根本描述不清的状态压缩成一维来描述. 时间复 ...
- gulp常用配置
由于项目中经常会使用到gulp,而每次配置大概都差不多,所以将配置记录一下 项目结构 ├─dist │ ├─assets │ ├─css │ ├─images │ └─js ├─node_module ...
- moviepy音视频开发:音频合成类CompositeAudioClip介绍
☞ ░ 前往老猿Python博文目录 ░ CompositeAudioClip是AudioClip的直接子类,用于将几个音频剪辑合成为一个音频剪辑.CompositeAudioClip类只有一个构造方 ...
- 第15.42节、PyQt输入部件:QFontComboBox、QLineEdit、QTextEdit、QPlainText功能详解
专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 一.引言 输入部件量比较多,且功能很丰富,但除了用于编写编辑器.浏览器 ...
- Python学习随笔:使用xlwings读取和操作Execl文件
一.背景 有2种模块可以对Execl文件,一种是xlwt 方式,需要安装三个库文件 xlrd(读Excel)xlwt(写Excel)xlutils(修改Excel),也是网上介绍文章最多的一种方法,一 ...
- [GKCTF2020]CheckIN 注意了解多方面的东西
打开之后是这样的,没有发现反序列化函数,但是发现有一个@eval,想到了一句话,这是用base64进行传参首先传参phpinfo();看看,需要经过base64编码 http://e0cc90ac-d ...
- secret_key伪造session来进行越权
从swpuctf里面的一道ctf题目来讲解secret_key伪造session来进行越权. 以前没有遇到过这种题目,这次遇到了之后查了一些资料把它做了出来,记录一下知识点. 参考资料 http:// ...
- react项目引入使用element-react报错
解决办法 npm i react-hot-loader@next -D
- 关于Android手机CPU不同架构的问题
1.共有7种架构 armeabiv-v7a: 第7代及以上的 ARM 处理器.2011年15月以后的生产的大部分Android设备都使用它. arm64-v8a: 第8代.64位ARM处理器,很少设备 ...
- 小白都看得懂的Javadoc上手教程
Javadoc是什么 官方回答: Javadoc is a tool for generating API documentation in HTML format from doc comments ...