【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)
2179: FFT快速傅立叶
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 3308 Solved: 1720Description
给出两个n位10进制整数x和y,你需要计算x*y。Input
第一行一个正整数n。 第二行描述一个位数为n的正整数x。 第三行描述一个位数为n的正整数y。Output
输出一行,即x*y的结果。Sample Input
1
3
4Sample Output
12数据范围:
n<=60000HINT
Source
【分析】
FFT裸题。
结果的第i位 f*g(i)=f(k)*g(i-k) 【后面就会知道,这是标准的卷积形式,可以用FFT加速
FFTnlogn的,后面总结。
现在还是只会递归版本。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 60010*4
const double pi=3.14159265358; struct P
{
double x,y;
P() {x=y=;}
P(double x,double y):x(x),y(y){}
friend P operator + (P x,P y) {return P(x.x+y.x,x.y+y.y);}
friend P operator - (P x,P y) {return P(x.x-y.x,x.y-y.y);}
friend P operator * (P x,P y) {return P(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
}a[Maxn],b[Maxn]; char ss[Maxn];
int ans[Maxn]; void fft(P *s,int n,int f)
{
if(n==) return;
P a0[n>>],a1[n>>];
for(int i=;i<=n;i+=) a0[i>>]=s[i],a1[i>>]=s[i+];
fft(a0,n>>,f);fft(a1,n>>,f);
P wn(cos(*pi/n),f*sin(*pi/n)),w(,);
for(int i=;i<(n>>);i++,w=w*wn) s[i]=a0[i]+w*a1[i],s[i+(n>>)]=a0[i]-w*a1[i];
} int main()
{
int n;
scanf("%d",&n);n--;
scanf("%s",ss);
for(int i=;i<=n;i++) a[n-i].x=(ss[i]-'');
scanf("%s",ss);
for(int i=;i<=n;i++) b[n-i].x=(ss[i]-'');
int nn=;
while(nn<=*n) nn<<=;
fft(a,nn,);fft(b,nn,);
for(int i=;i<=nn;i++) a[i]=a[i]*b[i];
fft(a,nn,-);
memset(ans,,sizeof(ans));
for(int i=;i<=*n;i++) ans[i]=(int)(a[i].x/nn+0.5);
for(int i=;i<=*n;i++) ans[i+]+=ans[i]/,ans[i]%=;
int ll=*n;
while(ans[ll+]!=) ans[ll+]+=ans[ll+]/,ans[++ll]%=;
while(ll>&&ans[ll]==) ll--;
for(int i=ll;i>=;i--) printf("%d",ans[i]);//printf("\n");
return ;
}
2017-04-14 11:52:12
【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)的更多相关文章
- bzoj 2179: FFT快速傅立叶 -- FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- bzoj 2179 FFT快速傅立叶 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream& ...
- BZOJ 2179 FFT快速傅立叶 ——FFT
[题目分析] 快速傅里叶变换用于高精度乘法. 其实本质就是循环卷积的计算,也就是多项式的乘法. 两次蝴蝶变换. 二进制取反化递归为迭代. 单位根的巧妙取值,是的复杂度成为了nlogn 范德蒙矩阵计算逆 ...
- BZOJ2179:FFT快速傅立叶(FFT)
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...
- 【bzoj2179】FFT快速傅立叶 FFT
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出 输出一行,即x*y的结果. 样例 ...
- BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
- BZOJ 2179: FFT快速傅立叶
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2923 Solved: 1498[Submit][Status][Di ...
- 【BZOJ2179】FFT快速傅立叶
[BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...
随机推荐
- 怎样用javascript关闭本窗口
大家都知道window.close()是用来关闭窗口的,而且ie和firefox都是支持的. 为了实现用户对浏览器的绝对控制,ie中用close关闭非open打开的窗口时回弹出一个对话框询问用户,怎么 ...
- Node.js的开源博客系统Ghost搭建教程
准备工作 Node.js版本:0.10.x.0.12.x.4.2.x.安装步骤可参考:Node.js环境搭建 Ghost版本:0.7.4:中文集成版(33.6M),中文标准版(3.39M),英文原版( ...
- CodeForces - 1015D
There are nn houses in a row. They are numbered from 11 to nn in order from left to right. Initially ...
- docker使用现有容器生成新的镜像
/*运行docker run后 --则进入该容器里了 我们做一些变更,比如安装一些东西 ,然后针对这个容器进行创建新的镜像 */ 基本形式: docker commit -m "change ...
- php常用函数——数组函数
php常用函数——数组函数
- php查询mysql返回大量数据结果集导致内存溢出的解决方法
web开发中如果遇到php查询mysql返回大量数据导致内存溢出.或者内存不够用的情况那就需要看下MySQL C API的关联,那么究竟是什么导致php查询mysql返回大量数据时内存不够用情况? 答 ...
- Ubuntu之镜像iso安装系统
ubuntu的安装 官网下载iso文件,网址:http://releases.ubuntu.com/16.04.4/, 选择:ubuntu-16.04.4-server-amd64.iso: 下载完毕 ...
- 事务的特性——ACID
在日常操作中,对于一组相关操作通常需要其全部成功或全部失败.在关系型数据库中,这组操作称作为事务.事务具有四种特性:原子性,一致性,隔离性和持久性. 原子性(atomicity):事务必须以一个整体单 ...
- iTextSharp之pdfRead(两个文件文本内容的比较,指定页数的pdf截取,水印的添加)
using iTextSharp.text; using iTextSharp.text.pdf; using iTextSharp.text.pdf.parser; using System; us ...
- 85.Maximal Rectangle---dp
题目链接:https://leetcode.com/problems/maximal-rectangle/description/ 题目大意:给出一个二维矩阵,计算最大的矩形面积(矩形由1组成).例子 ...