题目描述

BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, m of them are red, while the others are black. The root of the tree is vertex 1 and it’s a red vertex.
Let’s define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.
Recall that

  • The length of a path on the tree is the sum of the weights of the edges in this path.
  • The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.
  • Vertex u is the ancestor of vertex v if it lies on the shortest path between vertex v and the root of the tree (which is vertex 1 in this problem).

As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices vi,1, vi,2, . . . , vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.
Note that

  • BaoBao is free to change any vertex among all the n vertices to a red vertex, NOT necessary among the ki vertiecs whose maximum cost he tries to minimize.
  • All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.

Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.

输入

There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n, m and q (2≤m≤n≤105, 1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.
The second line contains m integers r1, r2, . . . , rm (1 = r1 < r2 <...< rm≤n), indicating the red vertices.
The following (n-1) lines each contains three integers ui, vi and wi (1≤ui, vi≤n, 1≤wi≤109),indicating an edge with weight wi connecting vertex ui and vi in the tree.
For the following q lines, the i-th line will first contain an integer ki (1≤ki≤n). Then ki integers vi,1, vi,2, . . . , vi,ki follow (1≤vi,1 < vi,2 < ... < vi,ki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.
It’s guaranteed that the sum of n in all test cases will not exceed 106, and the sum of ki in all test cases will not exceed 2×106.

输出

For each test case output q lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.

样例输入

2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3

样例输出

4
5
3
8
0
0
0

提示

The first sample test case is shown above. Let’s denote C(v) as the cost of vertex v.
For the 1st game, the best choice is to make vertex 2 red, so that C(3) = 4, C(7) = 3 and C(8) = 4. So the answer is 4.
For the 2nd game, the best choice is to make vertex 3 red, so that C(4) = 3, C(5) = 2, C(7) = 4 and C(8) = 5. So the answer is 5.
For the 3rd game, the best choice is to make vertex 6 red, so that C(7) = 1, C(8) = 2, C(10) = 2 and C(11) = 3. So the answer is 3.
For the 4th game, the best choice is to make vertex 12 red, so that C(4) = 8, C(5) = 7 and C(12) = 0.
So the answer is 8.

 
二分总是过不了呀呀呀呀
自闭了啊啊啊啊 
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=+;
int T,n,m,q,cnt,tot;
bool red[N];
int last[N],pos[N],f[N],rmq[N],mm[N],dp[N][],a[N];
ll cost[N],cost_t[N];
struct tree{
int v,w,nex;
}t[N];
bool cmp(int a,int b)
{
return cost_t[a]>cost_t[b];
}
void add(int x,int y,int z)
{
cnt++;
t[cnt].v=y;
t[cnt].nex=last[x];
last[x]=cnt;
t[cnt].w=z;
}
void dfs(int x,int fa,int deep,ll dis,ll dis1)
{
if (red[x]) dis1=;
cost[x]=dis; cost_t[x]=dis1;
pos[x]=tot; f[tot]=x; rmq[tot++]=deep;
for (int i=last[x];i;i=t[i].nex)
{
if (t[i].v==fa) continue;
dfs(t[i].v,x,deep+,dis+t[i].w,dis1+t[i].w);
f[tot]=x;
rmq[tot++]=deep;
}
}
void ST(int n)
{
mm[]=-;
for (int i=;i<=n;i++)
{
mm[i]=((i&(i-))==) ? mm[i-]+:mm[i-];
dp[i][]=i;
}
for (int j=;j<=mm[n];j++)
for (int i=;i+(<<j)-<=n;i++)
dp[i][j]=rmq[dp[i][j-]]<rmq[dp[i+(<<(j-))][j-]] ? dp[i][j-] : dp[i+(<<(j-))][j-];
}
int query(int a,int b)
{
a=pos[a]; b=pos[b];
if (a>b) swap(a,b);
int k=mm[b-a+];
int ret=rmq[dp[a][k]]<=rmq[dp[b-(<<k)+][k]] ? dp[a][k] : dp[b-(<<k)+][k];
return f[ret];
}
int main()
{
scanf("%d",&T);
while (T--)
{
int x,y,z,k;
cnt=; tot=;
memset(red,,sizeof(red));
memset(last,, sizeof(last)); scanf("%d%d%d",&n,&m,&q);
for (int i=;i<=m;i++)
{
scanf("%d",&x);
red[x]=true;
}
for (int i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z); add(y,x,z);
} cost[]=cost_t[]=cost_t[n+]=;
dfs(,-,,,);
ST(tot-); while (q--)
{
scanf("%d",&k);
for (int i=;i<=k;i++) scanf("%d",&a[i]); sort(a+,a++k,cmp); a[k+]=n+; ll ans=cost_t[a[]],lon,maxx=;
int fa=a[];
for (int i=;i<=k;i++)
{
int new_fa=query(fa,a[i]);
int dep1=rmq[pos[fa]],dep2=rmq[pos[new_fa]];
if (dep2<dep1) maxx+=cost[fa]-cost[new_fa]; lon=min(cost_t[a[i]],cost[a[i]]-cost[new_fa]);
maxx=max(maxx,lon); fa=new_fa;
ans=min(ans,max(maxx,cost_t[a[i+]]));
}
printf("%lld\n",ans);
}
}
return ;
}

ACM-ICPC2018 青岛赛区网络预赛-B- Red Black Tree的更多相关文章

  1. ACM-ICPC 2018 青岛赛区网络预赛 J. Press the Button(数学)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4056 题意:有一个按钮,时间倒计器和计数器,在时间[0,t]内, ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  5. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  6. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  7. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  8. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  9. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

随机推荐

  1. PSP1130

    PSP时间图: 类型 任务 开始时间 结束时间 净时间 中断时间 日期 开会 开会 16:17 16:50 33 0 20171027 开会 开会 17:00 17:22 22 0 20171028 ...

  2. sql nolock是什么

    百度:SQL Server 中的 NOLOCK 到底是什么意思? 文章地址:http://blog.sina.com.cn/s/blog_7d3b18a50100rfwg.html 查询语句加上 no ...

  3. C++ Primer Plus学习:第七章

    C++入门第七章:函数-C++的编程模块 函数的基本知识 要使用C++函数,必须完成如下工作: 提供函数定义 提供函数原型 调用函数 库函数是已经定义和编译好的函数,可使用标准库头文件提供原型. 定义 ...

  4. Java throw try catch

    public class Runtest { public static void main(String[] args) { // TODO Auto-generated method stub T ...

  5. Mware中CentOS设置静态IP

    Mware中CentOS设置静态IP   因为之前搭建的MongoDB分片没有采用副本集,最近现网压力较大,所以准备研究一下,于是在自己电脑的虚拟机中搭建环境,但是发现之前VMware设置的是DHCP ...

  6. so加载报错:dlopen failed: couldn't map ... Permission denied

    转自:https://blog.csdn.net/u013270444/article/details/60869376 问题描述: 我的应用当中集成了一个安全相关的sdk,而这个sdk中使用的so是 ...

  7. js & right click menu & 鼠标滑词

    js & right click menu & 鼠标滑词 // 鼠标滑词 mouseSlipGetWords() { const getSelectionText = () => ...

  8. Spring Cloud Config

    1.config服务端配置 1.1 引入依赖 <dependency> <groupId>org.springframework.boot</groupId> &l ...

  9. FZU2127_养鸡场

    题目的意思为要你求出满足三边范围条件且周长为n的三角形的数目. 其实做法是直接枚举最短边,然后就可以知道第二条边的取值范围,同时根据给定的范围缩小范围. 同时根据第二条边的范围推出第三条边的范围,再次 ...

  10. BZOJ4892 Tjoi2017dna(后缀数组)

    对每个子串暴力匹配至失配三次即可.可以用SA查lcp.然而在bzoj上被卡常了.当然也可以二分+哈希或者SAM甚至FFT. #include<iostream> #include<c ...