题目描述

BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, m of them are red, while the others are black. The root of the tree is vertex 1 and it’s a red vertex.
Let’s define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.
Recall that

  • The length of a path on the tree is the sum of the weights of the edges in this path.
  • The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.
  • Vertex u is the ancestor of vertex v if it lies on the shortest path between vertex v and the root of the tree (which is vertex 1 in this problem).

As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices vi,1, vi,2, . . . , vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.
Note that

  • BaoBao is free to change any vertex among all the n vertices to a red vertex, NOT necessary among the ki vertiecs whose maximum cost he tries to minimize.
  • All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.

Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.

输入

There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n, m and q (2≤m≤n≤105, 1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.
The second line contains m integers r1, r2, . . . , rm (1 = r1 < r2 <...< rm≤n), indicating the red vertices.
The following (n-1) lines each contains three integers ui, vi and wi (1≤ui, vi≤n, 1≤wi≤109),indicating an edge with weight wi connecting vertex ui and vi in the tree.
For the following q lines, the i-th line will first contain an integer ki (1≤ki≤n). Then ki integers vi,1, vi,2, . . . , vi,ki follow (1≤vi,1 < vi,2 < ... < vi,ki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.
It’s guaranteed that the sum of n in all test cases will not exceed 106, and the sum of ki in all test cases will not exceed 2×106.

输出

For each test case output q lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.

样例输入

2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3

样例输出

4
5
3
8
0
0
0

提示

The first sample test case is shown above. Let’s denote C(v) as the cost of vertex v.
For the 1st game, the best choice is to make vertex 2 red, so that C(3) = 4, C(7) = 3 and C(8) = 4. So the answer is 4.
For the 2nd game, the best choice is to make vertex 3 red, so that C(4) = 3, C(5) = 2, C(7) = 4 and C(8) = 5. So the answer is 5.
For the 3rd game, the best choice is to make vertex 6 red, so that C(7) = 1, C(8) = 2, C(10) = 2 and C(11) = 3. So the answer is 3.
For the 4th game, the best choice is to make vertex 12 red, so that C(4) = 8, C(5) = 7 and C(12) = 0.
So the answer is 8.

 
二分总是过不了呀呀呀呀
自闭了啊啊啊啊 
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=+;
int T,n,m,q,cnt,tot;
bool red[N];
int last[N],pos[N],f[N],rmq[N],mm[N],dp[N][],a[N];
ll cost[N],cost_t[N];
struct tree{
int v,w,nex;
}t[N];
bool cmp(int a,int b)
{
return cost_t[a]>cost_t[b];
}
void add(int x,int y,int z)
{
cnt++;
t[cnt].v=y;
t[cnt].nex=last[x];
last[x]=cnt;
t[cnt].w=z;
}
void dfs(int x,int fa,int deep,ll dis,ll dis1)
{
if (red[x]) dis1=;
cost[x]=dis; cost_t[x]=dis1;
pos[x]=tot; f[tot]=x; rmq[tot++]=deep;
for (int i=last[x];i;i=t[i].nex)
{
if (t[i].v==fa) continue;
dfs(t[i].v,x,deep+,dis+t[i].w,dis1+t[i].w);
f[tot]=x;
rmq[tot++]=deep;
}
}
void ST(int n)
{
mm[]=-;
for (int i=;i<=n;i++)
{
mm[i]=((i&(i-))==) ? mm[i-]+:mm[i-];
dp[i][]=i;
}
for (int j=;j<=mm[n];j++)
for (int i=;i+(<<j)-<=n;i++)
dp[i][j]=rmq[dp[i][j-]]<rmq[dp[i+(<<(j-))][j-]] ? dp[i][j-] : dp[i+(<<(j-))][j-];
}
int query(int a,int b)
{
a=pos[a]; b=pos[b];
if (a>b) swap(a,b);
int k=mm[b-a+];
int ret=rmq[dp[a][k]]<=rmq[dp[b-(<<k)+][k]] ? dp[a][k] : dp[b-(<<k)+][k];
return f[ret];
}
int main()
{
scanf("%d",&T);
while (T--)
{
int x,y,z,k;
cnt=; tot=;
memset(red,,sizeof(red));
memset(last,, sizeof(last)); scanf("%d%d%d",&n,&m,&q);
for (int i=;i<=m;i++)
{
scanf("%d",&x);
red[x]=true;
}
for (int i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z); add(y,x,z);
} cost[]=cost_t[]=cost_t[n+]=;
dfs(,-,,,);
ST(tot-); while (q--)
{
scanf("%d",&k);
for (int i=;i<=k;i++) scanf("%d",&a[i]); sort(a+,a++k,cmp); a[k+]=n+; ll ans=cost_t[a[]],lon,maxx=;
int fa=a[];
for (int i=;i<=k;i++)
{
int new_fa=query(fa,a[i]);
int dep1=rmq[pos[fa]],dep2=rmq[pos[new_fa]];
if (dep2<dep1) maxx+=cost[fa]-cost[new_fa]; lon=min(cost_t[a[i]],cost[a[i]]-cost[new_fa]);
maxx=max(maxx,lon); fa=new_fa;
ans=min(ans,max(maxx,cost_t[a[i+]]));
}
printf("%lld\n",ans);
}
}
return ;
}

ACM-ICPC2018 青岛赛区网络预赛-B- Red Black Tree的更多相关文章

  1. ACM-ICPC 2018 青岛赛区网络预赛 J. Press the Button(数学)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4056 题意:有一个按钮,时间倒计器和计数器,在时间[0,t]内, ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  5. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  6. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  7. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  8. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  9. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

随机推荐

  1. C++ STL 全排列

    摘自爱国师哥博客https://www.cnblogs.com/aiguona/p/7304945.html 一.概念 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元 ...

  2. lintcode-206-区间求和 I

    206-区间求和 I 给定一个整数数组(下标由 0 到 n-1,其中 n 表示数组的规模),以及一个查询列表.每一个查询列表有两个整数 [start, end] . 对于每个查询,计算出数组中从下标 ...

  3. eclipse取消validation验证

    点击按钮如下:window-Preferences-Validation.如图. 然后把build里面的都取消.即可.

  4. QQueue与QStack使用

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QQueue与QStack使用     本文地址:http://techieliang.com ...

  5. scss在ide的命令参数

    %FileName% ../css/%FileBaseName%.css --sourcemap=none –style expanded

  6. 知识点总结:Linq和Lambda

    基本语法: Linq:var result=from t in table order by sort ascending/descending select t: Lambda:var result ...

  7. 【C++】深度探索C++对象模型读书笔记--执行期语意学(Runtime Semantics)

    对象的构造和析构: 全局对象 C++程序中所有的global objects都被放置在程序的data segment中.如果显式指定给它一个值,此object将以此值为初值.否则object所配置到的 ...

  8. 【ABP】Abp的AspNetZero5.0版本无法使用ctrl+f5调式

    原文:http://www.cnblogs.com/94pm/p/7942483.html AspNetZero是基于Abp框架开发的商业程序,最近从Abp交流群中得知5.0版本开始加入了防盗版的功能 ...

  9. 集成学习—boosting和bagging异同

    集成学习 集成学习通过构建并结合多个学习器来完成学习任务.只包含同种类型的个体学习器,这样的集成是“同质”的:包含不同类型的个体学习器,这样的集成是“异质”的.集成学习通过将多个学习器进行结合,常可获 ...

  10. tarjan强连通分量模板(pascal)

    友好城市 [问题描述]小 w 生活在美丽的 Z 国. Z 国是一个有 n 个城市的大国, 城市之间有 m 条单向公路(连接城市 i. j 的公路只能从 i 连到 j). 城市 i. j 是友好城市当且 ...