题目描述

BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, m of them are red, while the others are black. The root of the tree is vertex 1 and it’s a red vertex.
Let’s define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.
Recall that

  • The length of a path on the tree is the sum of the weights of the edges in this path.
  • The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.
  • Vertex u is the ancestor of vertex v if it lies on the shortest path between vertex v and the root of the tree (which is vertex 1 in this problem).

As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices vi,1, vi,2, . . . , vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.
Note that

  • BaoBao is free to change any vertex among all the n vertices to a red vertex, NOT necessary among the ki vertiecs whose maximum cost he tries to minimize.
  • All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.

Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.

输入

There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n, m and q (2≤m≤n≤105, 1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.
The second line contains m integers r1, r2, . . . , rm (1 = r1 < r2 <...< rm≤n), indicating the red vertices.
The following (n-1) lines each contains three integers ui, vi and wi (1≤ui, vi≤n, 1≤wi≤109),indicating an edge with weight wi connecting vertex ui and vi in the tree.
For the following q lines, the i-th line will first contain an integer ki (1≤ki≤n). Then ki integers vi,1, vi,2, . . . , vi,ki follow (1≤vi,1 < vi,2 < ... < vi,ki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.
It’s guaranteed that the sum of n in all test cases will not exceed 106, and the sum of ki in all test cases will not exceed 2×106.

输出

For each test case output q lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.

样例输入

2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3

样例输出

4
5
3
8
0
0
0

提示

The first sample test case is shown above. Let’s denote C(v) as the cost of vertex v.
For the 1st game, the best choice is to make vertex 2 red, so that C(3) = 4, C(7) = 3 and C(8) = 4. So the answer is 4.
For the 2nd game, the best choice is to make vertex 3 red, so that C(4) = 3, C(5) = 2, C(7) = 4 and C(8) = 5. So the answer is 5.
For the 3rd game, the best choice is to make vertex 6 red, so that C(7) = 1, C(8) = 2, C(10) = 2 and C(11) = 3. So the answer is 3.
For the 4th game, the best choice is to make vertex 12 red, so that C(4) = 8, C(5) = 7 and C(12) = 0.
So the answer is 8.

 
二分总是过不了呀呀呀呀
自闭了啊啊啊啊 
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=+;
int T,n,m,q,cnt,tot;
bool red[N];
int last[N],pos[N],f[N],rmq[N],mm[N],dp[N][],a[N];
ll cost[N],cost_t[N];
struct tree{
int v,w,nex;
}t[N];
bool cmp(int a,int b)
{
return cost_t[a]>cost_t[b];
}
void add(int x,int y,int z)
{
cnt++;
t[cnt].v=y;
t[cnt].nex=last[x];
last[x]=cnt;
t[cnt].w=z;
}
void dfs(int x,int fa,int deep,ll dis,ll dis1)
{
if (red[x]) dis1=;
cost[x]=dis; cost_t[x]=dis1;
pos[x]=tot; f[tot]=x; rmq[tot++]=deep;
for (int i=last[x];i;i=t[i].nex)
{
if (t[i].v==fa) continue;
dfs(t[i].v,x,deep+,dis+t[i].w,dis1+t[i].w);
f[tot]=x;
rmq[tot++]=deep;
}
}
void ST(int n)
{
mm[]=-;
for (int i=;i<=n;i++)
{
mm[i]=((i&(i-))==) ? mm[i-]+:mm[i-];
dp[i][]=i;
}
for (int j=;j<=mm[n];j++)
for (int i=;i+(<<j)-<=n;i++)
dp[i][j]=rmq[dp[i][j-]]<rmq[dp[i+(<<(j-))][j-]] ? dp[i][j-] : dp[i+(<<(j-))][j-];
}
int query(int a,int b)
{
a=pos[a]; b=pos[b];
if (a>b) swap(a,b);
int k=mm[b-a+];
int ret=rmq[dp[a][k]]<=rmq[dp[b-(<<k)+][k]] ? dp[a][k] : dp[b-(<<k)+][k];
return f[ret];
}
int main()
{
scanf("%d",&T);
while (T--)
{
int x,y,z,k;
cnt=; tot=;
memset(red,,sizeof(red));
memset(last,, sizeof(last)); scanf("%d%d%d",&n,&m,&q);
for (int i=;i<=m;i++)
{
scanf("%d",&x);
red[x]=true;
}
for (int i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z); add(y,x,z);
} cost[]=cost_t[]=cost_t[n+]=;
dfs(,-,,,);
ST(tot-); while (q--)
{
scanf("%d",&k);
for (int i=;i<=k;i++) scanf("%d",&a[i]); sort(a+,a++k,cmp); a[k+]=n+; ll ans=cost_t[a[]],lon,maxx=;
int fa=a[];
for (int i=;i<=k;i++)
{
int new_fa=query(fa,a[i]);
int dep1=rmq[pos[fa]],dep2=rmq[pos[new_fa]];
if (dep2<dep1) maxx+=cost[fa]-cost[new_fa]; lon=min(cost_t[a[i]],cost[a[i]]-cost[new_fa]);
maxx=max(maxx,lon); fa=new_fa;
ans=min(ans,max(maxx,cost_t[a[i+]]));
}
printf("%lld\n",ans);
}
}
return ;
}

ACM-ICPC2018 青岛赛区网络预赛-B- Red Black Tree的更多相关文章

  1. ACM-ICPC 2018 青岛赛区网络预赛 J. Press the Button(数学)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4056 题意:有一个按钮,时间倒计器和计数器,在时间[0,t]内, ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  5. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  6. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  7. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  8. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  9. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

随机推荐

  1. 欢迎来怼——第四次Scrum会议

    一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华小组照片 二.开会信息 时间:2017/10/16 17:15~17:40,总计25min.地点:东北师范 ...

  2. “我爱淘”第二冲刺阶段Scrum站立会议3

    完成任务: 完成了注册界面的设计,以及部分代码,但是还没有完成服务器端的添加功能. 计划任务: 将注册功能实现了它,可以对数据库进行添加,在客户端实现分类功能,通过学院的分类查看书籍. 遇到问题: 分 ...

  3. python __call__ 函数

    __call__ Python中有一个有趣的语法,只要定义类型的时候,实现__call__函数,这个类型就成为可调用的. 换句话说,我们可以把这个类型的对象当作函数来使用,相当于 重载了括号运算符. ...

  4. C语言文法阅读与理解序

    <指针>→*  | * < 指针> <直接声明符>  <标识符> | <直接声明>[]| <直接声明>[常量表达式] | < ...

  5. HDU 2105 The Center of Gravity

    http://acm.hdu.edu.cn/showproblem.php?pid=2105 Problem Description Everyone know the story that how ...

  6. linux之JDK安装

    1.JDK安装 a.卸载JDK (1)卸载默认的JDK 用root用户登陆到系统,打开一个终端输入 # rpm -qa|grep gcj 显示内容其中包含下面两行信息 # java-1.4.2-gcj ...

  7. sublime text there are no packages available for installation 解决办法

    hosts  增加一行 : #50.116.33.29       sublime.wbond.net.

  8. 开源人脸识别face_recognition

    环境:python36 1.安装dlib.face_recognition windows版 下载dlib,cp后面是py版本 下载地址:https://pypi.org/simple/dlib/ 提 ...

  9. chrome 常用插件集锦

    stylish 改变浏览器CSS样式

  10. 【C++】C++ static关键字详解

    static的作用 1.隐藏 当我们编译多个文件时,所有未加static前缀的全局变量和函数都具有全局可见性,其他的源文件也能访问.如,我们有源文件source1.cpp定义了一个全局变量i和函数Fu ...