题目描述

BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, m of them are red, while the others are black. The root of the tree is vertex 1 and it’s a red vertex.
Let’s define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.
Recall that

  • The length of a path on the tree is the sum of the weights of the edges in this path.
  • The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.
  • Vertex u is the ancestor of vertex v if it lies on the shortest path between vertex v and the root of the tree (which is vertex 1 in this problem).

As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices vi,1, vi,2, . . . , vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.
Note that

  • BaoBao is free to change any vertex among all the n vertices to a red vertex, NOT necessary among the ki vertiecs whose maximum cost he tries to minimize.
  • All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.

Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.

输入

There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n, m and q (2≤m≤n≤105, 1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.
The second line contains m integers r1, r2, . . . , rm (1 = r1 < r2 <...< rm≤n), indicating the red vertices.
The following (n-1) lines each contains three integers ui, vi and wi (1≤ui, vi≤n, 1≤wi≤109),indicating an edge with weight wi connecting vertex ui and vi in the tree.
For the following q lines, the i-th line will first contain an integer ki (1≤ki≤n). Then ki integers vi,1, vi,2, . . . , vi,ki follow (1≤vi,1 < vi,2 < ... < vi,ki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.
It’s guaranteed that the sum of n in all test cases will not exceed 106, and the sum of ki in all test cases will not exceed 2×106.

输出

For each test case output q lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.

样例输入

2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3

样例输出

4
5
3
8
0
0
0

提示

The first sample test case is shown above. Let’s denote C(v) as the cost of vertex v.
For the 1st game, the best choice is to make vertex 2 red, so that C(3) = 4, C(7) = 3 and C(8) = 4. So the answer is 4.
For the 2nd game, the best choice is to make vertex 3 red, so that C(4) = 3, C(5) = 2, C(7) = 4 and C(8) = 5. So the answer is 5.
For the 3rd game, the best choice is to make vertex 6 red, so that C(7) = 1, C(8) = 2, C(10) = 2 and C(11) = 3. So the answer is 3.
For the 4th game, the best choice is to make vertex 12 red, so that C(4) = 8, C(5) = 7 and C(12) = 0.
So the answer is 8.

 
二分总是过不了呀呀呀呀
自闭了啊啊啊啊 
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=+;
int T,n,m,q,cnt,tot;
bool red[N];
int last[N],pos[N],f[N],rmq[N],mm[N],dp[N][],a[N];
ll cost[N],cost_t[N];
struct tree{
int v,w,nex;
}t[N];
bool cmp(int a,int b)
{
return cost_t[a]>cost_t[b];
}
void add(int x,int y,int z)
{
cnt++;
t[cnt].v=y;
t[cnt].nex=last[x];
last[x]=cnt;
t[cnt].w=z;
}
void dfs(int x,int fa,int deep,ll dis,ll dis1)
{
if (red[x]) dis1=;
cost[x]=dis; cost_t[x]=dis1;
pos[x]=tot; f[tot]=x; rmq[tot++]=deep;
for (int i=last[x];i;i=t[i].nex)
{
if (t[i].v==fa) continue;
dfs(t[i].v,x,deep+,dis+t[i].w,dis1+t[i].w);
f[tot]=x;
rmq[tot++]=deep;
}
}
void ST(int n)
{
mm[]=-;
for (int i=;i<=n;i++)
{
mm[i]=((i&(i-))==) ? mm[i-]+:mm[i-];
dp[i][]=i;
}
for (int j=;j<=mm[n];j++)
for (int i=;i+(<<j)-<=n;i++)
dp[i][j]=rmq[dp[i][j-]]<rmq[dp[i+(<<(j-))][j-]] ? dp[i][j-] : dp[i+(<<(j-))][j-];
}
int query(int a,int b)
{
a=pos[a]; b=pos[b];
if (a>b) swap(a,b);
int k=mm[b-a+];
int ret=rmq[dp[a][k]]<=rmq[dp[b-(<<k)+][k]] ? dp[a][k] : dp[b-(<<k)+][k];
return f[ret];
}
int main()
{
scanf("%d",&T);
while (T--)
{
int x,y,z,k;
cnt=; tot=;
memset(red,,sizeof(red));
memset(last,, sizeof(last)); scanf("%d%d%d",&n,&m,&q);
for (int i=;i<=m;i++)
{
scanf("%d",&x);
red[x]=true;
}
for (int i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z); add(y,x,z);
} cost[]=cost_t[]=cost_t[n+]=;
dfs(,-,,,);
ST(tot-); while (q--)
{
scanf("%d",&k);
for (int i=;i<=k;i++) scanf("%d",&a[i]); sort(a+,a++k,cmp); a[k+]=n+; ll ans=cost_t[a[]],lon,maxx=;
int fa=a[];
for (int i=;i<=k;i++)
{
int new_fa=query(fa,a[i]);
int dep1=rmq[pos[fa]],dep2=rmq[pos[new_fa]];
if (dep2<dep1) maxx+=cost[fa]-cost[new_fa]; lon=min(cost_t[a[i]],cost[a[i]]-cost[new_fa]);
maxx=max(maxx,lon); fa=new_fa;
ans=min(ans,max(maxx,cost_t[a[i+]]));
}
printf("%lld\n",ans);
}
}
return ;
}

ACM-ICPC2018 青岛赛区网络预赛-B- Red Black Tree的更多相关文章

  1. ACM-ICPC 2018 青岛赛区网络预赛 J. Press the Button(数学)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4056 题意:有一个按钮,时间倒计器和计数器,在时间[0,t]内, ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  5. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  6. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  7. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  8. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  9. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

随机推荐

  1. AOP:jdk的动态代理

    1.文件结构 2.建立接口 package com.wangcf.manager; public interface IUserManager { public void add(); public ...

  2. <<世界是数字的>>读书笔记

    <世界是数字的>这本书是大学职业规划老师介绍个我读的,从着本中我学到了很多. 第一章,计算机里有什么.这个问题可以从两方面来看:逻辑上或者说功能上的组成,即每一部分是什么.做什么.怎样做. ...

  3. 【技术向】rainmeter的设计与发现

    我们在大学期间所学的那点代码知识还远远不够,于是我就自己寻找到了一款简单易懂的软件,来丰富我的代码知识. 这款软件叫rainmeter,中文叫做雨滴,是一款可以修改桌面的软件.它可以将桌面上更改出硬盘 ...

  4. .net学习-扩展

    uwp uwpapp-斗鱼,微信等 云和移动优先 远程桌面连接设置 teamviewer V8内核 Node.js javascript 事件循环 express框架 bootstrap NoSQL ...

  5. Python @retry装饰器的使用与实现案例(requests请求失败并重复请求)

    在爬虫代码的编写中,requests请求网页的时候常常请求失败或错误,一般的操作是各种判断状态和超时,需要多次重试请求,这种情况下,如果想优雅的实现功能,可以学习下retrying包下的retry装饰 ...

  6. TP中循环遍历

    循环遍历(重点) 在ThinkPHP中系统提供了2个标签来实现数组在模版中的遍历: volist标签.foreach标签. Volist语法格式: Foreach语法格式: 从上述的语法格式发现vol ...

  7. Java多线程 -sleep 用法详解

    阿里面试官问我这个问题,我仔细总结了一下: 参考:sleep.yield.wait.join的区别(阿里面试) 我们可能经常会用到 Thread.Sleep 函数来使线程挂起一段时间.那么你有没有正确 ...

  8. C++四种类型转化

    2018-08-02 (星期四)C++类型转换:static_cast提供编译时期静态类型检测:    static_cast <type-id> (expression)    1)完成 ...

  9. 如何在vi中设置tab的长度

    在使用vi写python时(其实,不管用什么写python程序时,都要注意),首先要将Tab键的长度设为4,因为使用python编程时,我们是通过缩进来实现作用域的,所以要统一Tab键的长度.具体方法 ...

  10. HDU.2149 Public Sale (博弈论 巴什博弈)

    HDU.2149 Public Sale (博弈论 巴什博弈) 题意分析 巴什博奕裸题 博弈论快速入门 代码总览 #include <bits/stdc++.h> using namesp ...