ZOJ 1609 Equivalence(状压+dfs减枝)
Time Limit: 5 Seconds Memory Limit: 32768 KB
When learning mathamatics, sometimes one may come to an theorem which goes like this:
The following statements are equivalent:
a)......
b)......
c)......
For example, let A be an angle between 0 and 360 degrees, the following statements are equivalent:
a)A = 90 degrees;
b)A is a right angle;
c)sin(A) = 1.
Proving such a theorem is usually a difficult task, because you have to prove that for any two statements Si and Sj, Si concludes Sj and vise versa. Sometimes, proving Si concludes Sj directly is quite difficult so we may find a Sk and prove that Si concludes Sk and Sk concludes Sj. Now given the difficulty of proving every Si => Sj, you are to calculate the minimal total difficulty to prove that the given statements are equivalent.
Input
The input contains several cases. Each case begins with an integer n (2 <= n <= 6), the number of statements in this case, followed by n lines, each contains n integers.
The jth integer of the ith row represents the difficulty of proving Si => Sj. The ith integer of the ith row is always 0 as it's obvious that Si concludes Si. All the n * n integers are between 0 and 100, inclusively. Input is terminated by EOF.
Output
For each test case, output a line with the minimal difficulty for that case.
Sample Input
4
0 2 3 4
5 0 7 8
9 10 0 12
13 14 15 0
Sample Output
34
Author: PAN, Minghao
Source: ZOJ Monthly, May 2003
题解:该题是求强连通,并使权值最小。。。 状压+dfs减枝
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<string>
#include<vector>
using namespace std;
struct node
{
int x,y,w;
}mp[];
int n,cnt,ans;
int a[][];
void dfs(int k,int sum)
{
if (sum>ans) return; //减枝,如果sum已经大于已保存ans的最优解,说明此方法不是最优,直接返回
int num=; //记录到现在为止,能强连通其他点的点的个数
for(int i=;i<n;i++)
{
num+=a[k][i]==((<<n)-); //(1<<n)-1 表达的是所有都连通的状态
a[k+][i]=a[k][i];
}
if(num==n){ ans=min(ans,sum); return;} //完成了所有的强连通
if(k>cnt) return; //枚举的路已经没有了 for(int i=;i<n;i++)
{
if(a[k+][i] & <<mp[k].x) //如果i点已经连通mp[k].x,则加上mp[k]这条边,就能连通mp[k].y能连通的点
a[k+][i]|=a[k][mp[k].y];
} dfs(k+,sum+mp[k].w);//第k条路取
for(int i=;i<n;i++) a[k+][i]=a[k][i];
dfs(k+,sum);//不取
}
int main()
{ while(~scanf("%d",&n))
{
cnt=;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
int x;
scanf("%d",&x);
if (i!=j) mp[cnt].x=i,mp[cnt].y=j,mp[cnt++].w=x;
}
cnt--;
for(int i=;i<n;i++) a[][i]=<<i;
ans=0x7fffffff;
dfs(,);
printf("%d\n",ans);
}
return ;
}
ZOJ 1609 Equivalence(状压+dfs减枝)的更多相关文章
- bzoj1725: [Usaco2006 Nov]Corn Fields牧场的安排(状压dfs)
1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1122 Solved: 80 ...
- 状压dfs小记
一点前(tu)言(cao) 真的考起dfs来可谓是什么都能往dfs上套 状压不止能dp,还能与dfs结合成为搜索好(duliu)题 剪枝卡常司空见惯(打开题解一看并不是纯dfs,emmmm) 开始正文 ...
- codeforces 285 D. Permutation Sum 状压 dfs打表
题意: 如果有2个排列a,b,定义序列c为: c[i] = (a[i] + b[i] - 2) % n + 1 但是,明显c不一定是一个排列 现在,给出排列的长度n (1 <= n <= ...
- JZYZOJ1530 [haoi2013]开关控制 状压 dfs 折半搜索
http://172.20.6.3/Problem_Show.asp?id=1530 元宵节快要到了,某城市人民公园将举办一次灯展.Dr.Kong准备设计出一个奇妙的展品,他计划将编号为1到N的N(1 ...
- UVALive 6255:Kingdoms(状压DFS)
题目链接 题意 给出n个王国和n*n的矩阵,mp[i][j] 代表第 i 个王国欠第 j 个王国 mp[i][j] 块钱.如果当前的王国处于负债状态,那么这个王国就会被消除,和它相连的王国的债务都会被 ...
- 2018icpc南京网络赛-E AC Challenge(状压+dfs)
题意: n道题,每道题有ai和bi,完成这道题需要先完成若干道题,完成这道题可以得到分数t*ai+bi,其中t是时间 1s, n<=20 思路: 由n的范围状压,状态最多1e6 然后dfs,注意 ...
- hdu 4620 Fruit Ninja Extreme(状压+dfs剪枝)
对t进行从小到大排序(要记录ID),然后直接dfs. 剪枝的话,利用A*的思想,假设之后的全部连击也不能得到更优解. 因为要回溯,而且由于每次cut 的数目不会超过10,所以需要回溯的下标可以利用一个 ...
- ZOJ 3777-Problem Arrangement(状压DP)
B - Problem Arrangement Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %l ...
- HDU - 6341 多校4 Let Sudoku Rotate(状压dfs)
Problem J. Let Sudoku Rotate Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K ...
随机推荐
- Java线程常用方法汇总
1.sleep() 使当前线程(即调用该方法的线程)暂停执行一段时间,让其他线程有机会继续执行,但它并不释放对象锁.也就是说如果有synchronized同步快,其他线程仍然不能访问共享数据.注意该方 ...
- Eclipse+Spark搭建源码分析环境问题分析
欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...
- design thinking
- linux上使用wget下载文件
首次安装的centos操作系统是没有安装wget的,所以首先需要先安装wget,然后才能使用wget下载文件. 1.第一步,保证centos能正常连网.使用命令 :yum -y install wg ...
- 20145316 《Java程序设计》 课程总结
###20145316许心远<Java学习笔记(第8版)>课程总结 ##每周读书笔记链接汇总 ▪ [第一周读书笔记](http://www.cnblogs.com/xxy745214 ...
- 单元测试工具Nunit
原文链接:http://blog.csdn.net/snowshinoy/article/details/6951352 调试 附加到: nunit-agent.exe进程:
- OpenStack、KVM、VMWare和Docker
一.虚拟化 1.什么是虚拟化 虚拟化,是指通过虚拟化技术将一台计算机虚拟为多台逻辑计算机.在一台计算机上同时运行多个逻辑计算机,每个逻辑计算机可运行不同的操作系统,并且应用程序都可以在相互独立的空间内 ...
- 原生的 promise 的局限性
本文来自:https://ekyu.moe/article/limits-of-native-promise-and-async-await/ 众所周知,Nodejs 已原生支持 Promise 和 ...
- 源码编译PHP提示zip错误
本文来源:https://segmentfault.com/q/1010000002696561 /home/levi/soft/php-5.6.8/ext/zip/lib/zipint.h:118: ...
- 虚拟机网卡名称修改为 eth0
默认网卡名称是 eno16777736 1.修改配置文件 ifcfg-eno16777736 [root@localhost ~]# cd /etc/sysconfig/network-scripts ...