Warm up

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=4612

Description

N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels.

  If we can isolate some planets from others by breaking only one channel , the channel is called a bridge of the transportation system.

People don't like to be isolated. So they ask what's the minimal number of bridges they can have if they decide to build a new channel.

  Note that there could be more than one channel between two planets.

  

Input

  The input contains multiple cases.

  Each case starts with two positive integers N and M , indicating the number of planets and the number of channels.

  (2<=N<=200000, 1<=M<=1000000)

  Next M lines each contains two positive integers A and B, indicating a channel between planet A and B in the system. Planets are numbered by 1..N.

  A line with two integers '0' terminates the input.

  

Output

For each case, output the minimal number of bridges after building a new channel in a line.

Sample Input

4 4

1 2

1 3

1 4

2 3

0 0

Sample Output

0

Hint

题意

让你加一条边,使得这个图的桥数量最小

输出桥的数量

题解:

先缩点,然后求一个直径,然后输出树边数减去直径就好了

这样显然最小

代码

#include <bits/stdc++.h>

using namespace std;
const int maxn = 200000 + 500;
struct edge{
int v , nxt;
}e[2005000];
int head[maxn] , tot , n , m , dfn[maxn] , low[maxn] , dfs_clock , bridge , dis[maxn] , vis[maxn] , Ftp , belong[maxn] ;
stack < int > sp;
vector < int > G[maxn];
void link(int u , int v){ e[tot].v=v,e[tot].nxt=head[u],head[u]=tot++;} void dfs(int x , int pre){
dfn[x] = low[x] = ++ dfs_clock; sp.push( x );
for(int i = head[x] ; ~i ; i = e[i].nxt ){
if( (i ^ 1) == pre ) continue;
int v = e[i].v;
if(!dfn[v]){
dfs( v , i );
low[x] = min( low[x] , low[ v ] );
if(low[v] > dfn[x]) bridge ++ ;
}else low[x]=min(low[x],dfn[v]);
}
if( low[x] == dfn[x] ){
++ Ftp;
while(1){
int u = sp.top() ; sp.pop();
belong[u] = Ftp;
if( u == x ) break;
}
}
} queue < int > Q; int solve(){
vis[1] = 1 ;
Q.push( 1 );
while(!Q.empty()){
int s = Q.front() ; Q.pop();
for(auto it : G[s]){
if( vis[it] == 0 ){
vis[it] = 1 ;
dis[it] = dis[s] + 1;
Q.push( it );
}
}
}
int s = -1 , index = 0;
for( int it = 1 ; it <= Ftp ; ++ it ){
if(dis[it] > s){
s = dis[it];
index = it;
}
}
for(int i = 1 ; i <= Ftp ; ++ i) dis[i] = vis[i] = 0;
Q.push( index );
vis[index] = 1;
while(!Q.empty()){
int s = Q.front() ; Q.pop();
for(auto it : G[s]){
if( vis[it] == 0 ){
vis[it] = 1 ;
dis[it] = dis[s] + 1;
Q.push( it );
}
}
}
s = 0;
for( int it = 1 ; it <= Ftp ; ++ it ){
if(dis[it] > s){
s = dis[it];
}
}
return s;
} int main(int argc,char *argv[]){
while(scanf("%d%d",&n,&m)){
if( n == 0 && m == 0 ) break;
for(int i = 1 ; i <= n ; ++ i) head[i] = -1 , dfn[i] = low[i] = vis[i] = dis[i] = 0 , G[i].clear();
tot = dfs_clock = bridge = Ftp = 0 ;
for(int i = 1 ; i <= m ; ++ i){
int u , v ;
scanf("%d%d",&u,&v);
link( u , v );
link( v , u );
}
for(int i = 1 ; i <= n ; ++ i) if(!dfn[i]) dfs( i , 1 << 30 );
for(int i = 1 ; i <= n ; ++ i)
for(int j = head[i] ; ~j ; j = e[j].nxt){
int v = e[j].v;
if(belong[i] == belong[v]) continue;
G[belong[i]].push_back( belong[v] );
G[belong[v]].push_back( belong[i] );
}
int maxv = solve();
printf("%d\n" , bridge - maxv );
}
return 0;
}

HDU 4612 Warm up tarjan 树的直径的更多相关文章

  1. Hdu 4612 Warm up (双连通分支+树的直径)

    题目链接: Hdu 4612 Warm up 题目描述: 给一个无向连通图,问加上一条边后,桥的数目最少会有几个? 解题思路: 题目描述很清楚,题目也很裸,就是一眼看穿怎么做的,先求出来双连通分量,然 ...

  2. F - Warm up - hdu 4612(缩点+求树的直径)

    题意:有一个无向连通图,现在问添加一条边后最少还有几个桥 分析:先把图缩点,然后重构图为一棵树,求出来树的直径即可,不过注意会有重边,构树的时候注意一下 *********************** ...

  3. HDU 4612 Warm up tarjan缩环+求最长链

    Warm up Problem Description   N planets are connected by M bidirectional channels that allow instant ...

  4. HDU 4612 Warm up(Tarjan)

    果断对Tarjan不熟啊,Tarjan后缩点,求树上的最长路,注意重边的处理,借鉴宝哥的做法,开标记数组,标记自己的反向边. #pragma comment(linker, "/STACK: ...

  5. HDU 4612——Warm up——————【边双连通分量、树的直径】

    Warm up Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  6. 【HDU 4612 Warm up】BCC 树的直径

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4612 题意:一个包含n个节点m条边的无向连通图(无自环,可能有重边).求添加一条边后最少剩余的桥的数 ...

  7. hdu 4612 Warm up 有重边缩点+树的直径

    题目链接 Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tot ...

  8. 4612 warm up tarjan+bfs求树的直径(重边的强连通通分量)忘了写了,今天总结想起来了。

    问加一条边,最少可以剩下几个桥. 先双连通分量缩点,形成一颗树,然后求树的直径,就是减少的桥. 本题要处理重边的情况. 如果本来就两条重边,不能算是桥. 还会爆栈,只能C++交,手动加栈了 别人都是用 ...

  9. HDU 4612 Warm up(双连通分量缩点+求树的直径)

    思路:强连通分量缩点,建立一颗新的树,然后求树的最长直径,然后加上一条边能够去掉的桥数,就是直径的长度. 树的直径长度的求法:两次bfs可以求,第一次随便找一个点u,然后进行bfs搜到的最后一个点v, ...

随机推荐

  1. React Native 与 夜神模拟器的绑定

    之前一直用真机去调试, 每回更新一次都需要手动摇晃手机后才能reload JS, OMG,太麻烦了. 后来寻思模拟器网上推荐用Geny...什么的模拟器,但是那个模拟器还需要VBox一起用. 有点麻烦 ...

  2. Linux内核中实现生产者与消费者(避免无效唤醒)【转】

    转自:http://blog.csdn.net/crazycoder8848/article/details/42581399 本文关注的重点是,避免内核线程的无效唤醒,并且主要是关注消费者线程的设计 ...

  3. HttpURLConnection传json

    private static String sendToWangTing(DataRow dataRow) throws IOException{ String ip = Configuration. ...

  4. UNDO自我理解总结

    [场景] 当在更新数据的时候,发现更新的值写错了,这时就需要将已经更新的地方恢复到原始数据. [基本概念] 在更新的过程中,Oracle会将原始的数据都放入到UNDO里,这样当以上情况发生后,就可以从 ...

  5. LNMP结合discuz的配置

    一.安装discuz 配置参照LAMP结合discuz的第一部分 不要忘记了 添加hosts~!!!! ===============我是分割线.========================== ...

  6. jmeter------reponse报错”Unknown column 'XXXXX' in 'where clause'“

    一.问题描述 jmeter添加了与数据库mysql的连接,编写完JDBC Request之后,运行提示报错”Unknown column 'be7f5b6e750bb6becf855386338644 ...

  7. rest api load test

    1. SoapUI + LoadUI 2. https://github.com/jeffbski/bench-rest 3. JMeter

  8. electron 使用中的注意事项

    一.ELECTRON引用JQUERY.JS electron不能像正常的html文件引用jq.js那样(为嘛不造),elecron引用jq.js的方式为: <script>window.$ ...

  9. vue中methods、watch、computed之间的差别对比以及适用场景

    首先要说,methods,watch和computed都是以函数为基础的,但各自却都不同: 一.computer 当页面中有某些数据依赖其他数据进行变动的时候,可以使用计算属性. <p id=& ...

  10. 使用matlab表示“段数不确定”的分段函数

    示例函数: 分段函数f(x)的段数为数组a的长度减1,在表达f(x)时,不能直接使用a的长度5-1=4. 方法1: 先计算每个间隔点的函数值f(a2),f(a3),f(a4),再循环表示f(x). f ...