Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法
Time Limit: 60 Sec Memory Limit: 512 MB
Submit: 1044 Solved: 322
[Submit][Status][Discuss]
Description
Input
第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数。你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime
第二,如果不是质数,输出它最大的质因子是哪个。
Output
第一行CAS(CAS<=350,代表测试数据的组数)
以下CAS行:每行一个数字,保证是在64位长整形范围内的正数。
对于每组测试数据:输出Prime,代表它是质数,或者输出它最大的质因子,代表它是和数
Sample Input
2
13
134
8897
1234567654321
1000000000000
Sample Output
Prime
67
41
4649
5
HINT
数据范围:
保证cas<=350,保证所有数字均在64位长整形范围内。
分析:虽然题目叫做Miller rabin算法,不过真正上也需要Pollard rho算法
/*貌似这个代码在BZOJ上的评测器就会运行错误,但是在POJ上一道原题却通过了(POJ上语言选C++可以过,选择G++就过不了)*/
#include<iostream>
using namespace std;
#include<cstdio>
#define S 10
#include<cstdlib>
#include<ctime>
#define ll long long
ll cas, maxz=-;
ll read()
{
ll ans=;char c;
c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<='')
{
ans=ans*+c-'';
c=getchar();
}
return ans;
}
ll quick_mul_mod(ll a,ll b,ll c)//a*b%c
{
ll ret=;
a%=c;b%=c;
while(b)
{
if(b&)
{
ret+=a;
ret%=c;
b--;
}
a<<=;
a%=c;
b>>=;
}
return ret;
}
ll gcd(ll a,ll b)
{
if(a==) return ;
if(a<) return gcd(-a,b);
if(b==)
return a;
return gcd(b,a%b);
}
ll Pollard_rho(ll x,ll c)
{
ll x1=rand()%(x-)+;
ll x2=x1;
int i=,k=;
while()
{
i++;
x1=(quick_mul_mod(x1,x1,x)+c)%x;
ll d=gcd(x2-x1,x);
if(d!=&&d!=x) return d;
if(x2==x1) return x;
if(i==k)
{
x2=x1;
k+=k;
}
} }
ll quick_mod(ll a,ll b,ll c)//ji suan a^b%c
{
ll ans=;
a%=c;
while(b)
{
if(b&)
{
b--;
ans=quick_mul_mod(ans,a,c);
}
b>>=;
a=quick_mul_mod(a,a,c);
}
return ans;
}
bool Miller_rabin(ll n)
{
if(n==) return true;
if(n<=||!(n&)) return false;
ll u=n-,t=;
while(!(u&))
{
u>>=;
t++;
}
for(int i=;i<S;++i)
{
ll x=rand()%(n-)+;
x=quick_mod(x,u,n);
for(int i=;i<=t;++i)
{
ll y=quick_mul_mod(x,x,n);
if(y==&&x!=&&x!=n-)
return false;
x=y;
}
if(x!=) return false;
}
return true;
}
void findpri(ll n)
{
if(n==) return;
if(Miller_rabin(n))
{
maxz=max(maxz,n);
return;
}
ll p=n;
while(p==n)
p=Pollard_rho(p,rand()%(n-)+);
findpri(p);
findpri(n/p);
}
int main()
{
srand(time());
cas=read();
while(cas--)
{
maxz=;
ll n=read();
findpri(n);
if(maxz==n)/*最大的质因数就是本身*/
printf("Prime\n");
else printf("%lld\n",maxz);
}
return ;
}
Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法的更多相关文章
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- 浅谈 Miller-Robbin 与 Pollard Rho
前言 $Miller-Robbin$ 与 $Pollard Rho$ 虽然都是随机算法,不过用起来是真的爽. $Miller Rabin$ 算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法, ...
- 整数(质因子)分解(Pollard rho大整数分解)
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...
- Pollard Rho因子分解算法
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...
随机推荐
- 使用showplan.sql分析sql Performance
在HelloDBA网站找到一个分析sql性能的工具-showplan,记录一下 showplan.sql下载路径:http://www.HelloDBA.com/Download/showplan.z ...
- git服务器的简单搭建
安装git 安装git,参考:https://git-scm.com/book/zh/v1/%E8%B5%B7%E6%AD%A5-%E5%AE%89%E8%A3%85-Git 创建git仓库 使用ro ...
- python批量替换文件名
替换关键字 #-*-coding:utf-8-*- import os import re filepath = u'E:\\CMMI4\\07_测试文档' files = os.walk(filep ...
- [How to] HBase的bulkload使用方法
1.简介 将数据插入HBase表中的方法很多,我们可以通过TableOutputFormat以Mapreduce on HBase的方式将数据插入,也可以单纯的使用客户端API将数据插入.但是以上方法 ...
- java经典面试题大全
基本概念 操作系统中 heap 和 stack 的区别 什么是基于注解的切面实现 什么是 对象/关系 映射集成模块 什么是 Java 的反射机制 什么是 ACID BS与CS的联系与区别 Cookie ...
- Nginx 502错误:upstream sent too big header while reading response header from upstream
原因: 在使用Shiro的rememberMe功能时,服务器返回response的header部分过大导致. 解决方法: https://stackoverflow.com/questions/238 ...
- Valid Parentheses——栈经典
Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...
- js写一个插件
//;分号开头,用于防止代码压缩合并时与其它代码混在一起造成语法错误 //而事实证明,uglify压缩工具会将无意义的前置分号去掉,我只是习惯了这么写 //(function(){})();立即执行函 ...
- EF – 7.一对多关联
5.6.8 <一对多关联(上)> 5.6.9 <一对多关联(下)> 一对多的关联,可以说是整个数据库应用程序中最常见的一种关联类型了,因此,必须高度重视这种关联类型CRUD的实 ...
- LoadRunner的Capture Level说明
LoadRunner的Capture Level说明 Capture Level的设置说明: 1.Socket level data. Capture data using trapping on t ...