【Kruskal+贪心思想】BZOJ3624-[Apio2008]免费道路
国庆万岁!!!!!
【题目大意】
给定一张无向图,有两种边的类型为0和1。求一个最小生成树使得边0有k条。
【思路】
跑两次Kruskal。
第一次的时候优先选择边1,然后判断有哪些边0还不能连通,那么这些边0是必须要选取的。如果必须要选的边0大于k,那么直接输出无解。
第二次的时候先合并那么必须要选取的边0,然后在剩下的边0中左右还没有连通的里选取。如果把所有都选上了之后边0的数量还是没有到k,那么直接输出无解。
截下来按照普通Kruskal的方法把边1合并掉。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int MAXN=+;
const int MAXM=+;
struct Edge
{
int u,v;
}edge[MAXM];
int n,m,k;
int vis[MAXM];
int L,R;
int fa[MAXN],h[MAXN];
vector<int> mustchoose; void initset(){for (int i=;i<=n;i++) fa[i]=i,h[i]=;} int find(int x)
{
int r=x;
while (fa[r]!=r) r=fa[r];
while (fa[x]!=r)
{
int tmp=fa[x];
fa[x]=r;
x=fa[x];
}
return r;
} void unionset(int a,int b)
{
if (h[a]>=h[b])
{
fa[b]=a;
if (h[a]==h[b]) h[a]++;
}
else fa[a]=b;
} void init()
{
scanf("%d%d%d",&n,&m,&k);
L=,R=m+;
for (int i=;i<=m;i++)
{
int u,v,c;
scanf("%d%d%d",&u,&v,&c);
if (c) edge[++L]=(Edge){u,v};
else edge[--R]=(Edge){u,v};
}
} void solve()
{
int t=;
initset();
for (int i=;i<=m;i++)
{
int fa=find(edge[i].u),fb=find(edge[i].v);
if (fa!=fb)
{
unionset(fa,fb);
if (i>=R)
{
vis[i]=;
t++;
mustchoose.push_back(i);
}
}
}
if (t>k)
{
puts("no solution");
return;
}
// 找出必须要选择的鹅卵石路 initset();
for (int i=;i<mustchoose.size();i++)
{
int fa=find(edge[mustchoose[i]].u),fb=find(edge[mustchoose[i]].v);
unionset(fa,fb);
}
for (int i=R;i<=m;i++)
if (t<k && !vis[i])
{
int fa=find(edge[i].u),fb=find(edge[i].v);
if (fa!=fb)
{
unionset(fa,fb);
vis[i]=;
t++;
}
}
if (t<k)
{
puts("no solution");
return;
}
//先选择必须要的鹅卵石路,然后再用其他鹅卵石路填充 for (int i=;i<=L;i++)
{
int fa=find(edge[i].u),fb=find(edge[i].v);
if (fa!=fb)
{
unionset(fa,fb);
vis[i]=;
}
}
for (int i=;i<=L;i++) if (vis[i]) printf("%d %d %d\n",edge[i].u,edge[i].v,);
for (int i=R;i<=m;i++) if (vis[i]) printf("%d %d %d\n",edge[i].u,edge[i].v,);
} int main()
{
init();
solve();
}
【Kruskal+贪心思想】BZOJ3624-[Apio2008]免费道路的更多相关文章
- [BZOJ3624][Apio2008]免费道路
[BZOJ3624][Apio2008]免费道路 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入”. 题解 第一步,先尽量加入 c = 1 的边,若未形成一个连通块,则得到必须加入 ...
- BZOJ3624: [Apio2008]免费道路(最小生成树)
题意 题目链接 Sol 首先答案一定是一棵树 这棵树上有一些0边是必须要选的,我们先把他们找出来,如果数量$\geqslant k$显然无解 再考虑继续往里面加0的边,判断能否加到k条即可 具体做法是 ...
- Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路
首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...
- BZOJ 3624: [Apio2008]免费道路
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1201 Solved: ...
- bzoj 3624: [Apio2008]免费道路 生成树的构造
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 111 Solved: 4 ...
- 题解 Luogu P3623 [APIO2008]免费道路
[APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...
- [Apio2008]免费道路[Kruscal]
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1292 Solved: ...
- P3623 [APIO2008]免费道路
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special Judge Submit: 2143 Solved: 88 ...
- [APIO2008]免费道路
[APIO2008]免费道路 BZOJ luogu 先把必须连的鹅卵石路连上,大于k条no solution 什么样的鹅卵石路(u,v)必须连?所有水泥路都连上仍然不能使u,v连通的必须连 补全到k条 ...
随机推荐
- cocos2dx学习,转摘一些链接
cocos2d-x学习笔记09:动作2:持续动作 ccBezierConfig 贝塞尔坐标点是相对的 Box2DTestBed很有意思的demo,可惜自己水平有限针对其实现还是没弄明白,以后有时间多学 ...
- 【leetcode 简单】第三十九题 Excel表列名称
给定一个正整数,返回它在 Excel 表中相对应的列名称. 例如, 1 -> A 2 -> B 3 -> C ... 26 -> Z 27 -> AA 28 -> ...
- Impala笔记之通用命令
help help命令用于查询其它命令的用法 [quickstart.cloudera:21000] > help select; Executes a SELECT... query, fet ...
- js-打地鼠游戏开发
[生成画布] 第1课[随机生成地鼠] 第2课[定时生成地鼠] 第3课[打地鼠完结篇] 第4课 优酷在线播放地址 http://list.youku.com/albumlist/show?id=2939 ...
- 6 - Python内置结构 - 字典
目录 1 字典介绍 2 字典的基本操作 2.1 字典的定义 2.2 字典元素的访问 2.3 字典的增删改 3 字典遍历 3.1 遍历字典的key 3.2 遍历字典的value 3.3 变量字典的键值对 ...
- python模块分析之sqlite3数据库
SQLite作为一种应用广泛的文件式关系型数据库,python操作sqlite主要有两种方式,原生SQL语句和ORM映射工具. SQLAlchemy连接SQLITE SQLAlchemy是一款优秀的p ...
- python并发编程之asyncio协程(三)
协程实现了在单线程下的并发,每个协程共享线程的几乎所有的资源,除了协程自己私有的上下文栈:协程的切换属于程序级别的切换,对于操作系统来说是无感知的,因此切换速度更快.开销更小.效率更高,在有多IO操作 ...
- git常用命令速查表【转】
- UBIFS学习笔记
在做项目的时候,发现flash芯片有异常现象,经过打印分析,发现是UBIFS方面设置有一些问题,经过查阅一部分资料,最终得到问题的答案. 在解决问题的过程中,发现打印信息比较重要,但网上并没有直接的相 ...
- Python设计模式中单例模式的实现及在Tornado中的应用
单例模式的实现方式 将类实例绑定到类变量上 class Singleton(object): _instance = None def new(cls, *args): if not isinstan ...