Loj 2534 异或序列
Loj 2534 异或序列
- 考虑莫队离线处理.每加一个数,直接询问 \(a[x]\oplus k\) 的前/后缀数目即可,减同理.
- 利用异或的优秀性质,可以维护异或前缀和,容易做到每次 \(O(1)\) 移动区间端点.
很久没写莫队了.有一个小细节开始写错了:如果 \(a.belong\) 是根据 \(a.l\) 算出的,排序时的第二关键字就选取 \(a.r\) ,否则会被卡到 \(O(n^2)\) .
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mp make_pair
#define pii pair<int,int>
inline int read()
{
int x=0;
bool pos=1;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
pos=0;
for(;isdigit(ch);ch=getchar())
x=x*10+ch-'0';
return pos?x:-x;
}
const int MAXN=1e5+10,N=2e5;
struct query{
int l,r,bel;
int ans,id;
}q[MAXN];
bool cmp1(query a,query b)
{
if(a.bel!=b.bel)
return a.bel<b.bel;
if(a.r!=b.r)
return a.r<b.r;
return a.l<b.l;
}
bool cmp2(query a,query b)
{
return a.id<b.id;
}
int n,m,k;
int ans=0;
int a[MAXN],pre[MAXN],cnt[MAXN<<1];
void Add(int x)
{
ans+=cnt[k^pre[x]];
++cnt[pre[x]];
}
void Remove(int x)
{
--cnt[pre[x]];
ans-=cnt[k^pre[x]];
}
int main()
{
n=read(),m=read(),k=read();
int bsiz=sqrt(n);
for(int i=1;i<=n;++i)
a[i]=read(),pre[i]=pre[i-1]^a[i];
for(int i=1;i<=m;++i)
{
q[i].l=read(),q[i].r=read();
q[i].bel=(q[i].l-1)/bsiz;
q[i].id=i;
}
sort(q+1,q+1+m,cmp1);
int L=1,R=0;
for(int i=1;i<=m;++i)
{
int l=q[i].l,r=q[i].r;
while(L<l-1)
Remove(L++);
while(L>l-1)
Add(--L);
while(R<r)
Add(++R);
while(R>r)
Remove(R--);
q[i].ans=ans;
}
sort(q+1,q+1+m,cmp2);
for(int i=1;i<=m;++i)
printf("%d\n",q[i].ans);
return 0;
}
Loj 2534 异或序列的更多相关文章
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 「luogu4462」[CQOI2018] 异或序列
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...
- P3917 异或序列
P3917 异或序列暴力前缀异或枚举每一个区间,再求和,60分.正解:按每一位来做对于区间[l,r],如果它对答案有贡献,区间中1的个数一定是奇数,可以按每一位取(1<<i)的前缀和,q[ ...
- bzoj 5301 [Cqoi2018]异或序列 莫队
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 155[Submit][Status ...
- BZOJ5301: [Cqoi2018]异或序列(莫队)
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 400 Solved: 291[Submit][Status ...
- 【BZOJ5301】【CQOI2018】异或序列(莫队)
[BZOJ5301][CQOI2018]异或序列(莫队) 题面 BZOJ 洛谷 Description 已知一个长度为 n 的整数数列 a[1],a[2],-,a[n] ,给定查询参数 l.r ,问在 ...
- [bzoj5301][Cqoi2018]异或序列_莫队
异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...
- 【LOJ】#2534. 「CQOI2018」异或序列
题解 每个数都处理成前缀和,就相当于问\([l - 1,r]\)有几个数对\(x,y\),\(sum[x] ^ sum[y] = k\) 直接莫队即可 代码 #include <bits/std ...
- BZOJ_5301_[Cqoi2018]异或序列&&CF617E_莫队
Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...
随机推荐
- java高级特性(3)--方法可变参数
1.特征:... 2.方法可变参数,必须是方法参数列表的最后一位. 3.一个方法只能有一个方法可变参数. 4.方法可变参数本质是一个数组. 5.调用时按照方法可变参数赋值,多余的实参被封装成一个数组, ...
- Gtk基础学习总结(一)
第一个GTK程序例子: #include <stdio.h> #include <gtk/gtk.h> int main(int argc, char *argv[]) { g ...
- 安装webpack命令环境
1.通过cnpm安装webpack命令环境,如图 2.安装完后查看webpack的版本,如图
- 从SynchronizedCollection说起
SynchronizedCollection简介 SynchronizedCollection是Collections下所有现场安全集合的父类,并发安全集合可以分为三类,一种是比较老的实现,例如vec ...
- sina sae搭建wordpress数据库配置
sina app engine上搭建wordpress,使用快速安装向导会无法连接数据库. 可以在本地修改好 wp-config.php再提交. <?php /** * WordPress 基础 ...
- winform版本自动更新
我们在使用软件的时候经常会遇到升级版本,这也是Winform程序的一个功能,今天就大概说下我是怎么实现的吧(代码有点不完美有小BUG,后面再说) 先说下我的思路:首先在打开程序的时候去拿到我之前在网站 ...
- 25.大白话说java并发工具类-CountDownLatch,CyclicBarrier,Semaphore,Exchanger
1. 倒计时器CountDownLatch 在多线程协作完成业务功能时,有时候需要等待其他多个线程完成任务之后,主线程才能继续往下执行业务功能,在这种的业务场景下,通常可以使用Thread类的join ...
- 强连通分量算法-codevs1332
解决有向图的强连通分量的算法,有两个,一个是tarjan,一个是kosaraju,上午只看了一下kosaraju,不算太难,理解之后写了个模板题. 先说kosaraju算法,算法的主要思路是进行两次d ...
- Unity 3D 无法显示中文的解决方法
大家开始用unity3D时想必都会遇到一个问题,使用中文时会乱码.这是由于编码方式不同导致的,具体解决方法如下: 程序写代码什么的最好下个像Notepad++类似的工具,这里使用Notepad++修改 ...
- wma wmv asf格式分析
原文链接:http://blog.csdn.net/werocpp/article/details/5594067 原文链接:http://blog.chinaunix.net/uid-2075819 ...