论文笔记:dropout
Improving neural networks by preventing co-adaptation of feature detectors
arXiv preprint arXiv: 1207.0580, 2012
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
JMLR(Journal of Machine Learning Research), 2014
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
解决什么问题(What)
很大的神经网络在小数据集上训练,往往会导致过拟合
对每个训练样本,采用dropout的方法,随机删除一半的神经元,可以有效减少过拟合
模型结合通常能够提高机器学习方法的表现。但是,训练大网络的计算代价太高,又要训练一些不同的大网络,代价就更高了,而且还需要大量的数据,现实中往往没有足够的数据。就算训练了那么多大网络,用来实际应用也是不可行的,因为模型太大导致了很慢的响应速度。
可以使用dropout来防止过拟合,它起到了一个(和结合多个不同网络)近似的效果
为什么能解决(Why)
因为dropout防止了复杂的共适应co-adaptation,co-adaptation的意思是每个神经元学到的特征,必须结合其它的特定神经元作为上下文,才能提供对训练的帮助。
减小co-adaptation,就是要使每个神经元学到的特征,能更通用地提供帮助,它必须组合大量的内部上下文信息。
具体做法(How)
每次更新参数之前,每个神经元有一定的概率被丢弃,假设为p%,p可以设为50或者根据验证集的表现来选取,输入层的p比较小,保留概率接近于1
测试阶段不dropout,保留所有单元的权重,而且要乘以保留概率1-p%,为了保证输出期望一致
dropout不只用于前馈神经网络,还可以用于图模型,比如玻尔兹曼机。
对dropout的直观解释(Why)
对每个样本都随机地丢弃一半的单元,使得每个单元不能依赖其它单元来做出决策(这样学到的特征更独立)
训练阶段对于每个mini-batch网络的结构是不一样的(因为随机丢弃了一半的单元),测试阶段每个单元乘以保留概率。这样的效果近似于对多个不同的瘦网络做平均(类似集成的效果,能提供更准确的预测)
可以视作一种正则方法,通过给隐藏单元增加噪音
生物学上的motivation(Where)
有性生殖取一半父亲基因,一半母亲基因,还有低概率的基因突变,产生后代
无性生殖直接取父代的基因,加低概率的基因突变,产生后代
直觉上无性生殖更好,因为它把父代的优秀基因直接传给了后代。但是有性生殖是物种演化中最重要的方式,一个可能的解释是自然选择的准则并不是保持个体健康,而是基本的混合交流。基因不能依赖于当前已存在的基因,它需要和其它的基因共同协同学习有用的东西。
基于这个理论,使用dropout可以减小和固有神经元之间的依赖,使得它们可以随机地和其它神经元来共同学习,这可以使得神经元更加鲁棒,能够学到更多有用的特征。
权重约束
使用权重约束(也叫Max-norm),大的学习率衰减,高动量可以提升模型表现
用w表示任一隐藏单元的输入向量,当w的l2范式要大于某个阈值c时,把它约束为c。
这样可以使用更大的学习率,因为不用担心w的范式太大导致权重爆炸
dropout提供的噪音允许优化探索不同区域的权重空间(原先难以抵达的区域),所以可以使用较大的学习率衰减,从而做更少的探索,最后陷入最小值
MNIST实验
28*28的手写数字图像,10分类,6万训练集,1万测试集
SVHN(Street View House Number)实验
32*32*3的房子门牌号图像,识别房子门牌号,60万训练集,2万6测试集
CIFAR-10和CIFAR-100实验
32*32*3的现实图像,10分类和100分类,5万训练集,1万测试集
ImageNet实验
和其它正则化方法的比较
其它
- 和贝叶斯神经网络的比较
- 做了相关实验,发现dropout网络的特征更具有多样性,更稀疏。
- 做了相关实验,讨论了dropout rate和数据集大小对模型表现的影响
- 在测试阶段,通常使用Weight Scaling来预测(前面说的乘以1-p%),但是也可以使用另外一种方法Monte-Carlo来预测。
- 通常使用伯努利分布(p的概率为1,1-p的概率为0)来dropout,但是也可以使用高斯分布来dropout
- 阐述了Dropout RBM的构建和学习
论文笔记:dropout的更多相关文章
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...
- 论文笔记(1):Deep Learning.
论文笔记1:Deep Learning 2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...
- 论文笔记系列-Neural Network Search :A Survey
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...
- 论文笔记:CNN经典结构2(WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet)
前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResN ...
- 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...
- 【论文笔记】Learning Fashion Compatibility with Bidirectional LSTMs
论文:<Learning Fashion Compatibility with Bidirectional LSTMs> 论文地址:https://arxiv.org/abs/1707.0 ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Twitter 新一代流处理利器——Heron 论文笔记之Heron架构
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...
随机推荐
- VC++ 设置桌面壁纸
Windows Shell API提供了接口IActiveDesktop来完成墙纸的设置. //IActiveDesktop 接口方法表 (详情参见MSDN) AddDesktopItem AddDe ...
- Linux 文件夹含义(转)
1./bin :获得最小的系统可操作性所需要的命令 2./boot :内核和加载内核所需的文件 3./dev :终端.磁盘.调制解调器等的设备项 4./etc :关键的启动文件和配置文件 5./hom ...
- 自定义控件_VIewPager显示多个Item
一直以来想搞明白这个不完全的VIewPager是怎么做到的,有幸看到这片篇文章 有二种实现方法 1.设置的属性 1.clipChildren属性 2.setPageMargin 3.更新Item外界面 ...
- Math.max得到数组中最大值
Math.max(param1,param2) 因为参数不支持数组. 所以可以根据apply的特点来解决, var max = Math.max.apply(null,array),这样就可以轻易的得 ...
- 现代3D图形编程学习-关于本书
关于这本书 三维图像处理硬件很快成为了必不可少的组件.很多操作系统能够直接使用三维图像硬件,有些甚至要求需要有3D渲染能力的硬件.同时对于日益增加的手机系统,3D图像硬件,也成为了它们的必备特征. 对 ...
- 基于注解的形式配置Bean
基于注解的方式配置Bean:也就说我们在每个Bean的类名前面注解一下,Spring会自动帮我们扫描Bean放进IOC容器中 I基于注解的方式配置Bean(没有依赖关系的Bean)有两个步骤: 1组件 ...
- HDU_5533_Dancing Stars on Me
Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
- 如何使用 libtorch 实现 AlexNet 网络?
如何使用 libtorch 实现 AlexNet 网络? 按照图片上流程写即可.输入的图片大小必须 227x227 3 通道彩色图片 // Define a new Module. struct Ne ...
- 解决Bat脚本中包含中文,运行乱码
bat文件右键用“编辑” 打开, 另存为时,UTF-8保存为ANSI 格式.即可解决运行时乱码问题.
- LeetCode—Minimum Size Subarray Sum
题目: Given an array of n positive integers and a positive integer s, find the minimal length of a sub ...