题面

传送门

题解

后缀平衡树是个啥啊我不会啊……

那么我们来考虑一下\(SAM\)的做法好了

不难发现它的本义是要我们维护一棵\(trie\)树,并求出\(trie\)树上每一个节点到根的这段串的不同子串个数,而显然一个串的不同子串个数就是它的\(SAM\)上每一个节点的\(len[p]-len[fa[p]]\)之和

那么我们对这个\(trie\)建一个广义\(SAM\),这个\(SAM\)一定包含每一个路径的\(SAM\)

我们对每一个这棵\(trie\)上的每一个节点记录一个\(pos\),表示这个节点插入在\(SAM\)上的哪一个位置,然后把\(SAM\)的\(parent\)树记录一下\(dfs\)序

那么操作可以看做是在\(parent\)树上插入和删除节点,以插入为例,我们可以直接加上\(p\)到根节点的\(len\),但是这样有可能会算多,于是我们要减去\(p\)的前驱(以\(dfs\)序为顺序排列)和\(p\)的\(LCA\)的\(len\),以及和它的后继的\(LCA\)的\(len\)。但是这样可能又减多了,所以还需要加上它的前驱和后继的\(LCA\)的\(len\)

然后没有然后了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define IT set<int>::iterator
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(char *s){
R int len=0;R char ch;while(((ch=getc())>'z'||ch<'a')&&ch!='-');
for(s[++len]=ch;(ch=getc())>='a'&&ch<='z'||ch=='-';s[++len]=ch);
return s[len+1]='\0',len;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=2e5+5;
struct eg{int v,nx;}e[N<<1];int head[N],tot;
inline void add(R int u,R int v){e[++tot]={v,head[u]},head[u]=tot;}
char t[N];int l[N],ch[N][26],fa[N],pos[N],st[N],dep[N],dfn[N],top[N],sz[N],son[N],rk[N];
int las=1,cnt=1,n,tim;set<int> s;ll res;
void ins(int c,int p=las){
if(ch[p][c]){
int q=ch[p][c];
if(l[q]==l[p]+1)las=q;
else{
int nq=las=++cnt;l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],4*26);
fa[nq]=fa[q],fa[q]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}else{
int np=las=++cnt;l[np]=l[p]+1;
for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
if(!p)fa[np]=1;
else{
int q=ch[p][c];
if(l[q]==l[p]+1)fa[np]=q;
else{
int nq=++cnt;l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],4*26);
fa[nq]=fa[q],fa[q]=fa[np]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}
}
}
void dfs1(int u){
sz[u]=1,dep[u]=dep[fa[u]]+1;
go(u){
dfs1(v),sz[u]+=sz[v];
sz[v]>sz[son[u]]?son[u]=v:0;
}
}
void dfs2(int u,int t){
top[u]=t,rk[dfn[u]=++tim]=u;
if(!son[u])return;
dfs2(son[u],t);
go(u)if(!top[v])dfs2(v,v);
}
int LCA(int u,int v){
while(top[u]!=top[v]){
dep[top[u]]<dep[top[v]]?(swap(u,v),0):0;
u=fa[top[u]];
}return dep[u]<dep[v]?u:v;
}
void update(int u,int op){
if(op==1)s.insert(u);
IT itl,itr,it;itl=itr=it=s.find(u);
res+=op*l[rk[u]];
if(itl!=s.begin())--itl,res-=op*l[LCA(rk[u],rk[*itl])];
if(itr!=--s.end())++itr,res-=op*l[LCA(rk[u],rk[*itr])];
if(itl!=it&&itr!=it)res+=op*l[LCA(rk[*itl],rk[*itr])];
if(op==-1)s.erase(u);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(t);
st[0]=1;
for(R int i=1,top=0;i<=n;++i)if(t[i]=='-')--top;
else las=st[top],ins(t[i]-'a'),pos[i]=st[++top]=las;
fp(i,2,cnt)add(fa[i],i);
dfs1(1),dfs2(1,1);
for(R int i=1,top=0;i<=n;++i){
if(t[i]=='-')update(dfn[pos[st[top--]]],-1);
else update(dfn[pos[st[++top]=i]],1);
print(res);
}
return Ot(),0;
}

【bzoj5084】 hashit(广义SAM+set)的更多相关文章

  1. bzoj5084 hashit 广义SAM+树链的并

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5084 题解 考虑平常对于静态问题,我们应该如何用 SAM 求本质不同的子串个数. 对于一个常规 ...

  2. 【bzoj5084】hashit 广义后缀自动机+树链的并+STL-set

    题目描述 你有一个字符串S,一开始为空串,要求支持两种操作 在S后面加入字母C 删除S最后一个字母 问每次操作后S有多少个两两不同的连续子串 输入 一行一个字符串Q,表示对S的操作 如果第i个字母是小 ...

  3. 【HDU 4436】 str2int (广义SAM)

    str2int Problem Description In this problem, you are given several strings that contain only digits ...

  4. 【BZOJ 3926】 [Zjoi2015]诸神眷顾的幻想乡 (广义SAM)

    3926: [Zjoi2015]诸神眷顾的幻想乡 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 974  Solved: 573 Descriptio ...

  5. 【BZOJ 3473】 字符串 (后缀数组+RMQ+二分 | 广义SAM)

    3473: 字符串 Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串 ...

  6. luogu3346 诸神眷顾的幻想乡 (广义SAM)

    首先,让每一个叶节点做一次树根的话,每个路径一定至少有一次会变成直上直下的 于是对于每个叶节点作为根产生的20个trie树,把它们建到同一个广义SAM里 建法是对每个trie dfs去建,last就是 ...

  7. loj#6031. 「雅礼集训 2017 Day1」字符串(SAM 广义SAM 数据分治)

    题意 链接 Sol \(10^5\)次询问每次询问\(10^5\)个区间..这种题第一感觉就是根号/数据分治的模型. \(K\)是个定值这个很关键. 考虑\(K\)比较小的情况,可以直接暴力建SAM, ...

  8. Luogu P3181 [HAOI2016]找相同字符 广义$SAM$

    题目链接 \(Click\) \(Here\) 设一个串\(s\)在\(A\)中出现\(cnt[s][1]\)次,在\(B\)中出现\(cnt[s][2]\)次,我们要求的就是: \[\sum cnt ...

  9. BZOJ5084[hashit]

    题解: 后缀自动机 我们可以通过建立trie 把询问变成询问一些点的并 把trie建立成SAM和广义SAM基本相同,就是在父亲和儿子之间连边 然后就变成了询问树链的并 我们可以发现答案=sigma d ...

随机推荐

  1. 使用CMD命令行来对MySQL数据库执行迁移、备份、恢复

    1. 导出数据库数据   "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqldump.exe" -u root -p123abc ...

  2. Nginx源码完全注释(3)ngx_list.h / ngx_list.c

    列表头文件ngx_list.h #ifndef _NGX_LIST_H_INCLUDED_ #define _NGX_LIST_H_INCLUDED_ #include <ngx_config. ...

  3. selenium3 下载、配置

    s1-s3发展历程  : http://www.cnblogs.com/hhudaqiang/p/6550135.html 官网地址:http://www.seleniumhq.org/文档:http ...

  4. Linux下Maven的安装与使用

    pache Maven,是一个软件(特别是Java软件)项目管理及自动构建工具,由Apache软件基金会所提供.基于项目对象模型(POM)概念,Maven利 用一个中央信息片断能管理一个项目的构建.报 ...

  5. 最近公共祖先 LCA Tarjan算法

    来自:http://www.cnblogs.com/ylfdrib/archive/2010/11/03/1867901.html 对于一棵有根树,就会有父亲结点,祖先结点,当然最近公共祖先就是这两个 ...

  6. 1.spring.net Look-up Method 查找方法的注入(方法是抽象的需要spring.net注入)

    .为什么需要查找方法的注入 当Object依赖另一个生命周期不同的Object,尤其是当singleton依赖一个non-singleton时,常会遇到不少问题,Lookup Method Injec ...

  7. 白盒测试实践--Day4 12.20

    累计完成任务情况: 阶段内容 参与人 完成个人情况说明并提交作业 全体 汇总作业,查漏补缺,完成代码测试总结 小靳.小龙 完成测试小结 小黄.小尹 完成静态代码检查结果报告 小靳 完成JUnit脚本编 ...

  8. Go 语言并发笔记

    前言: 本文是学习<<go语言程序设计>> -- 清华大学出版社(王鹏 编著) 的2014年1月第一版 做的一些笔记 , 如有侵权, 请告知笔者, 将在24小时内删除, 转载请 ...

  9. [GO]方法值和方法表达式

    package main import "fmt" type Person struct { name string sex byte age int } func (p Pers ...

  10. CodeForces 474A Keyboard (水题)

    题意:给定一个键盘,然后一行字母,和一个字符,代表把那一行字母在键盘上左移还是右移一位. 析:没什么好说的,直接暴力就好. 代码如下: #include<bits/stdc++.h> us ...