Balls(poj 3783)
The classic Two Glass Balls brain-teaser is often posed as:
“Given two identical glass spheres, you would like to determine the lowest floor in a 100-story building from which they will break when dropped. Assume the spheres are undamaged when dropped below this point. What is the strategy that will minimize the worst-case scenario for number of drops?”
Suppose that we had only one ball. We’d have to drop from each floor from 1 to 100 in sequence, requiring 100 drops in the worst case.
Now consider the case where we have two balls. Suppose we drop the first ball from floor n. If it breaks we’re in the case where we have one ball remaining and we need to drop from floors 1 to n-1 in sequence, yielding n drops in the worst case (the first ball is dropped once, the second at most n-1 times). However, if it does not break when dropped from floor n, we have reduced the problem to dropping from floors n+1 to 100. In either case we must keep in mind that we’ve already used one drop. So the minimum number of drops, in the worst case, is the minimum over all n.
You will write a program to determine the minimum number of drops required, in the worst case, given B balls and an M-story building.
Input
The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set consists of a single line containing three(3) decimal integer values: the problem number, followed by a space, followed by the number of balls B, (1 ≤ B ≤ 50), followed by a space and the number of floors in the building M, (1 ≤ M ≤ 1000).
Output
For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the minimum number of drops needed for the corresponding values of B and M.
Sample Input
4
1 2 10
2 2 100
3 2 300
4 25 900
Sample Output
1 4
2 14
3 24
4 10
题目大意:
有一些鸡蛋,我们现在想知道这些鸡蛋的硬度。然后现在有一座很高很高的大楼里,我们现在要在这座大楼上测试鸡蛋的硬度。每个鸡蛋的硬度相同,鸡蛋的硬度定义为:如果鸡蛋从第 m
层上掉下来没有破裂,而从第 m+1 层上掉下来就破裂了,那么这个鸡蛋的硬度就是 m 。某个鸡蛋如果在实验中破裂了就永远的损失了。我们现在有 n
个鸡蛋。那么在最坏情况下我们最少需要做多少次实验呢?
输入数据:是 T 组数据,然后第一个数 是标号 op
,然后输入两个整数 M,和 N,分别表示有 M 个鸡蛋和 N层楼。
输出数据:标号 op , 和最坏情况下我们最少需要做多少次实验 ans
解题思路:
这是一个比较经典的 DP
问题,又叫做 “扔鸡蛋问题”,假设 dp[n,m] 表示 n 层楼、m 个鸡蛋时找到摔鸡蛋不碎的最少判断次数。则一个鸡蛋从第 i 层扔下,如果碎了,还剩 m−1 个鸡蛋,为确定下面楼层中的安全位置,还需要dp[i−1,m−1] 次(子问题);不碎的话,上面还有 n−i 层,还需要 dp[n−i,m]次(子问题,实体 n 层楼的上 n−i 层需要的最少判断次数和实体 n−i 层楼需要的最少判断次数其实是一样的)。
#include<stdio.h>
#include<string.h>
#include<stack>
#include<queue>
#include<iostream>
#include<algorithm>
#include<map>
#include<vector>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
const int Inf=0x3f3f3f3f;
int m,n,k,p;
int str[];
int ans[];
int dp[][];////dp[i][j]:表示在 i 层楼 还有 j 个鸡蛋的最小判断次数
int di[][]={{-,},{,},{,-},{,}};
map<ll,ll>::iterator it;
void solve(int p,int k)
{
memset(dp,,sizeof(dp));
for(int i=;i<=k;i++)
{
dp[i][]=i;//只有一个鸡蛋的情况
}
for(int i=;i<=p;i++)
{
dp[][i]=;//只有一层楼的情况
}
for(int i=;i<=k;i++)
for(int j=;j<=p;j++)
{
dp[i][j]=Inf;
for(int t=;t<=i;t++)
{
dp[i][j]=min(dp[i][j],max(dp[t-][j-],dp[i-t][j])+);
}
}
cout<<n<<" "<<dp[k][p]<<endl;
}
int main()
{
cin>>m;
while(m--)
{
cin>>n>>p>>k;
solve(p,k);
}
}
Balls(poj 3783)的更多相关文章
- poj 3783 Balls 动态规划 100层楼投鸡蛋问题
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...
- POJ 3783 Balls --扔鸡蛋问题 经典DP
题目链接 这个问题是谷歌面试题的加强版,面试题问的是100层楼2个鸡蛋最坏扔多少次:传送门. 下面我们来研究下这个题,B个鸡蛋M层楼扔多少次. 题意:给定B (B <= 50) 个一样的球,从 ...
- poj 3783
Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1196 Accepted: 783 Description ...
- Labeling Balls POJ - 3687 优先队列 + 反向拓扑
优先队列 + 反向拓扑 //#include<bits/stdc++.h> #include<iostream> #include<cstdio> #include ...
- [ACM] POJ 3687 Labeling Balls (拓扑排序,反向生成端)
Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10161 Accepted: 2810 D ...
- poj 3687 Labeling Balls - 贪心 - 拓扑排序
Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them with 1 to N ...
- POJ 3687 Labeling Balls(反向拓扑+贪心思想!!!非常棒的一道题)
Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16100 Accepted: 4726 D ...
- POJ——T 3687 Labeling Balls
http://poj.org/problem?id=3687 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14842 ...
- POJ 3687 Labeling Balls()
Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: 2636 Descri ...
随机推荐
- <context:annotation-config/>,<context:component-scan/>,<mvc:annotation-driven/>区分
链接:http://blog.csdn.net/baple/article/details/16864175 链接:http://blog.csdn.net/Baple/article/details ...
- 【mongodb】Mongodb初识
MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系 ...
- win32窗口样式GWL_EXSTYLE
Private Const GWL_STYLE = (-16) '窗口样式 '窗口风格Private Const WS_CAPTION = &HC00000 ...
- verilog中的有符号数理解(转)
verilog中的有符号数运算 有符号数的计算:若有需要关于有号数的计算,应当利用Verilog 2001所提供的signed及$signed()机制. Ex: input signed [7:0] ...
- smarty核心思想 自制模板引擎
<?php $tit = '今天下雨了,淋了半条街'; function tit($file){ //读文件 $h = file_get_contents($file); $h = str_re ...
- Unit05: JavaScript对象概述 、 常用内置对象一 、 常用内置对象二 、 常用内置对象三
Unit05: JavaScript对象概述 . 常用内置对象一 . 常用内置对象二 . 常用内置对象三 常用内置对象使用演示: <!DOCTYPE html> <html> ...
- POJ1273(最大流入门)
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 70333 Accepted: 2733 ...
- Java 设计模式 之 中介者模式(Mediator)
中介者的功能非常简单,就是封装对象之间的交互. 如果一个对象的操作会引起其他相关对象的变化,或者是某个操作需要引起其他对象的后续或连带操作,而这个对象又不希望自己来处理这些关系,那么久可以找中介者,把 ...
- 分析iOS Crash文件:符号化iOS Crash文件的3种方法
转自:http://www.cocoachina.com/industry/20140514/8418.html 转自wufawei的博客 当你的应用提交到App Store或者各个渠道之后,请问你多 ...
- MySQL升级指南
一 .MySQL升级 1.官方升级策略 注意 升级过程中必须使用具有管理权限的MySQL帐户来执行SQL语句. 1.升级方法 逻辑升级: 涉及使用 mysqldump从旧的MySQL版本导出现有数据 ...