Balls(poj 3783)
The classic Two Glass Balls brain-teaser is often posed as:
“Given two identical glass spheres, you would like to determine the lowest floor in a 100-story building from which they will break when dropped. Assume the spheres are undamaged when dropped below this point. What is the strategy that will minimize the worst-case scenario for number of drops?”
Suppose that we had only one ball. We’d have to drop from each floor from 1 to 100 in sequence, requiring 100 drops in the worst case.
Now consider the case where we have two balls. Suppose we drop the first ball from floor n. If it breaks we’re in the case where we have one ball remaining and we need to drop from floors 1 to n-1 in sequence, yielding n drops in the worst case (the first ball is dropped once, the second at most n-1 times). However, if it does not break when dropped from floor n, we have reduced the problem to dropping from floors n+1 to 100. In either case we must keep in mind that we’ve already used one drop. So the minimum number of drops, in the worst case, is the minimum over all n.
You will write a program to determine the minimum number of drops required, in the worst case, given B balls and an M-story building.
Input
The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set consists of a single line containing three(3) decimal integer values: the problem number, followed by a space, followed by the number of balls B, (1 ≤ B ≤ 50), followed by a space and the number of floors in the building M, (1 ≤ M ≤ 1000).
Output
For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the minimum number of drops needed for the corresponding values of B and M.
Sample Input
4
1 2 10
2 2 100
3 2 300
4 25 900
Sample Output
1 4
2 14
3 24
4 10
题目大意:
有一些鸡蛋,我们现在想知道这些鸡蛋的硬度。然后现在有一座很高很高的大楼里,我们现在要在这座大楼上测试鸡蛋的硬度。每个鸡蛋的硬度相同,鸡蛋的硬度定义为:如果鸡蛋从第 m
层上掉下来没有破裂,而从第 m+1 层上掉下来就破裂了,那么这个鸡蛋的硬度就是 m 。某个鸡蛋如果在实验中破裂了就永远的损失了。我们现在有 n
个鸡蛋。那么在最坏情况下我们最少需要做多少次实验呢?
输入数据:是 T 组数据,然后第一个数 是标号 op
,然后输入两个整数 M,和 N,分别表示有 M 个鸡蛋和 N层楼。
输出数据:标号 op , 和最坏情况下我们最少需要做多少次实验 ans
解题思路:
这是一个比较经典的 DP
问题,又叫做 “扔鸡蛋问题”,假设 dp[n,m] 表示 n 层楼、m 个鸡蛋时找到摔鸡蛋不碎的最少判断次数。则一个鸡蛋从第 i 层扔下,如果碎了,还剩 m−1 个鸡蛋,为确定下面楼层中的安全位置,还需要dp[i−1,m−1] 次(子问题);不碎的话,上面还有 n−i 层,还需要 dp[n−i,m]次(子问题,实体 n 层楼的上 n−i 层需要的最少判断次数和实体 n−i 层楼需要的最少判断次数其实是一样的)。
#include<stdio.h>
#include<string.h>
#include<stack>
#include<queue>
#include<iostream>
#include<algorithm>
#include<map>
#include<vector>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
const int Inf=0x3f3f3f3f;
int m,n,k,p;
int str[];
int ans[];
int dp[][];////dp[i][j]:表示在 i 层楼 还有 j 个鸡蛋的最小判断次数
int di[][]={{-,},{,},{,-},{,}};
map<ll,ll>::iterator it;
void solve(int p,int k)
{
memset(dp,,sizeof(dp));
for(int i=;i<=k;i++)
{
dp[i][]=i;//只有一个鸡蛋的情况
}
for(int i=;i<=p;i++)
{
dp[][i]=;//只有一层楼的情况
}
for(int i=;i<=k;i++)
for(int j=;j<=p;j++)
{
dp[i][j]=Inf;
for(int t=;t<=i;t++)
{
dp[i][j]=min(dp[i][j],max(dp[t-][j-],dp[i-t][j])+);
}
}
cout<<n<<" "<<dp[k][p]<<endl;
}
int main()
{
cin>>m;
while(m--)
{
cin>>n>>p>>k;
solve(p,k);
}
}
Balls(poj 3783)的更多相关文章
- poj 3783 Balls 动态规划 100层楼投鸡蛋问题
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...
- POJ 3783 Balls --扔鸡蛋问题 经典DP
题目链接 这个问题是谷歌面试题的加强版,面试题问的是100层楼2个鸡蛋最坏扔多少次:传送门. 下面我们来研究下这个题,B个鸡蛋M层楼扔多少次. 题意:给定B (B <= 50) 个一样的球,从 ...
- poj 3783
Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1196 Accepted: 783 Description ...
- Labeling Balls POJ - 3687 优先队列 + 反向拓扑
优先队列 + 反向拓扑 //#include<bits/stdc++.h> #include<iostream> #include<cstdio> #include ...
- [ACM] POJ 3687 Labeling Balls (拓扑排序,反向生成端)
Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10161 Accepted: 2810 D ...
- poj 3687 Labeling Balls - 贪心 - 拓扑排序
Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them with 1 to N ...
- POJ 3687 Labeling Balls(反向拓扑+贪心思想!!!非常棒的一道题)
Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16100 Accepted: 4726 D ...
- POJ——T 3687 Labeling Balls
http://poj.org/problem?id=3687 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14842 ...
- POJ 3687 Labeling Balls()
Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: 2636 Descri ...
随机推荐
- 拦截器springmvc防止表单重复提交【3】3秒后自动跳回首页【重点明白如何跳转到各自需要的页面没有实现 但是有思路】
[1]定义异常类 [重点]:异常类有个多参数的构造函数public CmsException(String s, String... args),可以用来接受多个参数:如(“异常信息”,“几秒跳转”, ...
- Hibernate One-to-One Mappings 一对一关系映射
Hibernate One-to-One Mappings 一对一关系映射 关键:一对一关系映射和多对一关系映射非常像.仅仅是unique 属性值为 true 样例:一个员工仅仅能有一个地址. Hib ...
- listener单点登录和在线人数
1,jsp提交一个form 2,把收集到的数据放到一个personInfo类中,personInfo类放进session中 3,添加的时候触发listener,把一个personInfo的accoun ...
- 数据库的备份与恢复(oracle 11g) (转)
一. 内容与步骤 (注意这里许多步骤需要同学们查资料,理解并消化后才能完成) 1.数据库创建 (1) 安装Oralce11g: (2) 创建至少两个以上用户: (3) 每个用户 ...
- vs2015安装ORACLE的DbFirst
不说DbFirst好在哪里,它和ModelFirst,CodeFirst都各有各的好,由于对于已经存在的一个大型的业务库,使用EntityFramework的更倾向于DbFirst,因为好多同事已经习 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...
- 批量修改文件名的bash脚本
#!/bin/bash while IFS='' read -r line || [[ -n "$line" ]]; do # echo "sox $line --cha ...
- laravel开启调试模式
mvim app/config/app.php 'debug' => true,
- iso网络模型
tcp/ip知识 1.iOS七层模型 应用层 表示层 应用层 ssh httpssl tls ftp mime html snmp 会话层 传输层 传输层 tcp udp 网络层 网络层 ipv6 i ...
- php常用字符串数组函数
Php常用的数组函数 键值操作 Array_values($arr) 获取数据的值 Array_keys($arr) 获取数组的key Array_flip($arr) 数组键值反转 In_array ...