使用Keras实现机器翻译(英语—>法语)
import numpy as np
from keras.models import Model
from keras.models import load_model
from keras.layers import Input,LSTM,Dense
batch_size = 64 # Batch size for training.
epochs = 100 # Number of epochs to train for.
latent_dim = 256 # Latent dimensionality of the encoding space.
num_samples = 10000 # Number of samples to train on.
# Path to the data txt file on disk.
data_path = 'fra.txt' input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
lines = open(data_path,encoding='utf-8').read().split('\n')
for index,line in enumerate(lines[: min(num_samples, len(lines) - 1)]):
input_text, target_text = line.split('\t')
target_text = '\t' + target_text + '\n'
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)
input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
# 统计source和target的字符数
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
# 取出最长的句子的长度
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])
# 打印具体的信息
print('Number of samples:', len(input_texts))
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)
# 将它们转化为id的形式存储(char-to-id)
input_token_index = dict(
[(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict(
[(char, i) for i, char in enumerate(target_characters)])
# 初始化
encoder_input_data = np.zeros(
(len(input_texts), max_encoder_seq_length, num_encoder_tokens),
dtype='float32')
decoder_input_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
decoder_target_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
print(encoder_input_data.shape)
# 训练测试
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
for t, char in enumerate(input_text):
encoder_input_data[i, t, input_token_index[char]] = 1.
for t, char in enumerate(target_text):
# decoder_target_data比decoder_input_data提前一个时间步长
decoder_input_data[i, t, target_token_index[char]] = 1.
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1, target_token_index[char]] = 1.
# 定义输入序列并处理它
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# 我们丢弃' encoder_output ',只保留状态
encoder_states = [state_h, state_c] # 设置解码器,使用' encoder_states '作为初始状态
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# 我们设置解码器以返回完整的输出序列,并返回内部状态。我们不在训练模型中使用返回状态,但是我们将在推理中使用它们。
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs) # Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
#model.load_weights('s2s.h5')
# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.2)
# 保存模型
model.save('s2s.h5') # 接下来:推理模式(抽样)
# Here's the drill:
# 1)编码输入,检索初始解码器状态
# 2)以初始状态和“序列开始”token作为目标运行一个解码器步骤。输出将是下一个目标token
# 3)重复当前目标token和当前状态 # 定义抽样模型
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
# 反向查找令牌索引,将序列解码回可读的内容。
reverse_input_char_index = dict(
(i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
(i, char) for char, i in target_token_index.items()) def decode_sequence(input_seq):
# 将输入编码为状态向量
states_value = encoder_model.predict(input_seq)
# 生成长度为1的空目标序列
target_seq = np.zeros((1, 1, num_decoder_tokens))
# 用起始字符填充目标序列的第一个字符。
target_seq[0, 0, target_token_index['\t']] = 1.
# 对一批序列的抽样循环(为了简化,这里我们假设批大小为1)
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
# 退出条件:到达最大长度或找到停止字符。
if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
# 更新目标序列(长度1)
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.
# 更新状态
states_value = [h, c]
return decoded_sentence
for seq_index in range(100):
# 取一个序列(训练测试的一部分)来尝试解码
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print('-')
print('Input sentence:', input_texts[seq_index])
print('Decoded sentence:', decoded_sentence)
数据集下载:http://www.manythings.org/anki/fra-eng.zip
使用Keras实现机器翻译(英语—>法语)的更多相关文章
- NLP教程(6) - 神经机器翻译、seq2seq与注意力机制
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...
- 解析Tensorflow官方English-Franch翻译器demo
今天我们来解析下Tensorflow的Seq2Seq的demo.继上篇博客的PTM模型之后,Tensorflow官方也开放了名为translate的demo,这个demo对比之前的PTM要大了很多(首 ...
- 解析Tensorflow官方PTB模型的demo
RNN 模型作为一个可以学习时间序列的模型被认为是深度学习中比较重要的一类模型.在Tensorflow的官方教程中,有两个与之相关的模型被实现出来.第一个模型是围绕着Zaremba的论文Recurre ...
- 【论文阅读】Sequence to Sequence Learning with Neural Network
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutske ...
- (zhuan) Some Talks about Dual Learning
研究|对偶学习:一种新的机器学习范式 this blog copy from: http://www.msra.cn/zh-cn/news/blogs/2016/12/dual-learning-2 ...
- NLP领域的ImageNet时代到来:词嵌入「已死」,语言模型当立
http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域 ...
- 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码- ...
- Attention机制全解
前言 之前已经提到过好几次Attention的应用,但还未对Attention机制进行系统的介绍,之后的实践模型attention将会用到很多,因此这里对attention机制做一个总结. Seq2S ...
- 完全基于卷积神经网络的seq2seq
本文参考文献: Gehring J, Auli M, Grangier D, et al. Convolutional Sequence to Sequence Learning[J]. arXiv ...
随机推荐
- flask基础之jijia2模板使用基础(二)
前言 在以前前后端不分离的时代,后台程序员往往又当爹又当妈,需要将前端程序员写的h5页面填充模板语言.而jijia2是一门十分强大的python的模板语言,是flask框架的核心模块之一.先简单介绍一 ...
- 64_t5
texlive-mkpattern-svn15878.1.2-33.fc26.2.noarch..> 24-May-2017 15:54 38178 texlive-mkpic-bin-svn3 ...
- 121.Best Time to Buy and Sell Stock---dp
题目链接:https://leetcode.com/problems/best-time-to-buy-and-sell-stock/description/ 题目大意:给出一串数组,找到差值最大的差 ...
- UVA题解一
UVA 100 题目描述:经典3n+1问题在\(n \leq 10^6\)已经证明是可行的,现在记\(f[n]\)为从\(n\)开始需要多少步才能到\(1\),给出\(L, R\),问\(f[L], ...
- 「pycaffe指南」使用caffe的NetSpec.py中的Python接口自动生成×.prototxt文件
https://www.jianshu.com/p/1a420445deea 作者:MapReducer 链接:https://www.jianshu.com/p/1a420445deea 來源:简书 ...
- CSS3 object-fit 图像裁剪
MDN定义 https://developer.mozilla.org/zh-CN/docs/Web/CSS/object-fit 该 object-fit CSS 属性指定替换元素的内容应该如何适应 ...
- Linux/Unix 怎样找出并删除某一时间点的文件
Linux/Unix 怎样找出并删除某一时间点的文件 在Linux/Unix系统中,我们的应用每天会产生日志文件,每天也会备份应用程序和数据库,日志文件和备份文件长时间积累会占用大量的存储空间,而有些 ...
- javadoc生成word接口文档
1.下载DocFlex/Doclet 下载地址 http://www.filigris.com/downloads/ 2.ecplise->project->generate javado ...
- 常见的 JavaScript 内存泄露
什么是内存泄露 指由于疏忽或错误造成程序未能释放已经不再使用的内存.内存泄漏并非指内存在物理上的消失, 而是应用程序分配某段内存后,由于设计错误,导致在释放该段内存之前就失去了对该段内存的控制,从而造 ...
- spring源码分析---事务篇
上一篇我介绍了spring事务的传播特性和隔离级别,以及事务定义的先关接口和类的关系.我们知晓了用TransactionTemplate(或者直接用底层P的latformTransactionMana ...