uva656 Optimal Programs
As you know, writing programs is often far from being easy. Things become even harder if your programs have to be as fast as possible. And sometimes there is reason for them to be. Many large programs such as operating systems or databases have ``bottlenecks'' - segments of code that get executed over and over again, and make up for a large portion of the total running time. Here it usually pays to rewrite that code portion in assembly language, since even small gains in running time will matter a lot if the code is executed billions of times.
In this problem we will consider the task of automating the generation of optimal assembly code. Given a function (as a series of input/output pairs), you are to come up with the shortest assembly program that computes this function.
The programs you produce will have to run on a stack based machine, that supports only five commands: ADD,SUB, MUL, DIV and DUP. The first four commands pop the two top elements from the stack and push their sum, difference, product or integer quotient1 , respectively, on the stack. The DUP command pushes an additional copy of the top-most stack element on the stack.
So if the commands are applied to a stack with the two top elements a and b (shown to the left), the resulting stacks look as follows:
At the beginning of the execution of a program, the stack will contain a single integer only: the input. At the end of the computation, the stack must also contain only one integer; this number is the result of the computation.
There are three cases in which the stack machine enters an error state:
- A DIV-command is executed, and the top-most element of the stack is 0.
- A ADD, SUB, MUL or DIV-command is executed when the stack contains only one element.
- An operation produces a value greater than 30000 in absolute value.
Input
The input consists of a series of function descriptions. Each description starts with a line containing a single integer n (), the number of input/output pairs to follow. The following two lines contains nintegers each:
in the first line (all different), and
in the second line. The numbers will be no more than 30000 in absolute value.
The input is terminated by a test case starting with n = 0. This test case should not be processed.
Output
You are to find the shortest program that computes a function f , such that f(xi) = yi for all . This implies that the program you output may not enter an error state if executed on the inputs xi(although it may enter an error state for other inputs). Consider only programs that have at most 10 statements.
For each function description, output first the number of the description. Then print out the se- quence of commands that make up the shortest program to compute the given function. If there is more than one such program, print the lexicographically smallest. If there is no program of at most 10 statements that computes the function, print the string ``Impossible''. If the shortest program consists of zero commands, print ``Empty sequence''.
Output a blank line after each test case.
Sample Input
4
1 2 3 4
0 -2 -6 -12
3
1 2 3
1 11 1998
1
1998
1998
0
Sample Output
Program 1
DUP DUP MUL SUB Program 2
Impossible Program 3
Empty sequence
Footnotes
- ... quotient1
- This corresponds to / applied to two integers in C/C++, and DIV in Pascal.
//http://uva.onlinejudge.org/external/6/656.html
#include<cstdio>
#include<cstring>
#include<cmath>
#include<stack>
#include<queue>
using namespace std;
const int maxn=10+5; const char * tr[] = {"ADD", "DIV", "DUP", "MUL", "SUB"};
enum op_e { ADD, DIV, DUP, MUL, SUB}; struct State {
State()
{
memset(path, 0, sizeof(path));
pathn=0;
}
stack<int> s;
int path[maxn];
int pathn;
}ans; int x[maxn], y[maxn];
int n; void init()
{
for(int i=0; i<n; i++)
scanf("%d", x+i);
for(int i=0; i<n; i++)
scanf("%d", y+i);
} // return true if trans is valid and modified t
bool trans(State& t, int i)
{
stack<int> &s = t.s;
//A ADD, SUB, MUL or DIV-command is executed when the stack contains only one element.
if(i!=DUP && s.size()==1) return false; int a=s.top();
if(i==DIV && a==0) return false; //当前栈的大小减去剩余步骤的大小,如果大于1,说明永远达不到目标(假设后面不是dup命令,则栈大小都是减一)
int len=s.size()-(10-t.pathn);
if(len>1) return false; //ok, now all options are valid
if(i==DUP)
{
s.push(a);
t.path[t.pathn++]=i;
return true;
} s.pop();//pop a
int b=s.top(); s.pop(); switch(i)
{
case ADD:
s.push(a+b);
break;
case SUB:
s.push(b-a);
break;
case MUL:
s.push(b*a);
break;
case DIV:
s.push(b/a);
break;
}
if(abs(s.top())>30000)
return false; t.path[t.pathn++]=i;
return true;
} bool checkOthers()
{
for (int i = 1; i < n; i++)
{
State t;
t.s.push(x[i]);
for(int j=0; j<ans.pathn; j++)
{
if(!trans(t, ans.path[j]))
return false;
}
if(t.s.top()!=y[i])
return false;
}
return true;
} bool bfs()
{
queue<State> q; ans = State();
State state;
state.s.push(x[0]);
q.push(state); while(!q.empty())
{
State front = q.front(); q.pop(); if(front.s.size()==1 && front.s.top()==y[0])
{
ans = front;
if(checkOthers())
return true;
} //已经10个了,不能再添加了
if(front.pathn==10)
continue; for(int i=ADD;i<=SUB;i++)
{
State t=front;
if(trans(t, i))
q.push(t);
}
}
return false;
} void solve() {
if (bfs()) {
if (ans.pathn == 0) printf("Empty sequence\n");
else {
for (int i = 0; i < ans.pathn - 1; i ++)
printf("%s ", tr[ans.path[i]]);
printf("%s\n", tr[ans.path[ans.pathn - 1]]);
}
}
else printf("Impossible\n");
printf("\n");
} int main()
{
#ifndef ONLINE_JUDGE
freopen("./uva656.in", "r", stdin);
#endif
int kase=0;
while(scanf("%d", &n)!=EOF && n)
{
init();
printf("Program %d\n", ++kase);
solve();
}
return 0;
}
uva656 Optimal Programs的更多相关文章
- POJ题目细究
acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP: 1011 NTA 简单题 1013 Great Equipment 简单题 102 ...
- BFS广搜题目(转载)
BFS广搜题目有时间一个个做下来 2009-12-29 15:09 1574人阅读 评论(1) 收藏 举报 图形graphc优化存储游戏 有时间要去做做这些题目,所以从他人空间copy过来了,谢谢那位 ...
- 泡泡一分钟:Optimal Trajectory Generation for Quadrotor Teach-And-Repeat
张宁 Optimal Trajectory Generation for Quadrotor Teach-And-Repeat链接:https://pan.baidu.com/s/1x0CmuOXiL ...
- 最优运输(Optimal Transfort):从理论到填补的应用
目录 引言 1 背景 2 什么是最优运输? 3 基本概念 3.1 离散测度 (Discrete measures) 3.2 蒙日(Monge)问题 3.3 Kantorovich Relaxation ...
- Optimal Flexible Architecture(最优灵活架构)
来自:Oracle® Database Installation Guide 12_c_ Release 1 (12.1) for Linux Oracle base目录命名规范: /pm/s/u 例 ...
- Leetcode: Optimal Account Balancing
A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...
- some simple recursive lisp programs
1. Write a procedure count-list to count the number of elements in a list (defun count-list (numbers ...
- (待续)C#语言中的动态数组(ArrayList)模拟常用页面置换算法(FIFO、LRU、Optimal)
目录 00 简介 01 算法概述 02 公用方法与变量解释 03 先进先出置换算法(FIFO) 04 最近最久未使用(LRU)算法 05 最佳置换算法(OPT) 00 简介 页面置换算法主要是记录内存 ...
- PLoP(Pattern Languages of Programs,程序设计的模式语言)
2014/8/1 12:24:21潘加宇 http://www.umlchina.com/News/Content/340.htmPloP大会2014即将举行 PLoP(Pattern Languag ...
随机推荐
- https://download.csdn.net/download/qq_33200967/10679367
convert_variables_to_constants 模型 https://download.csdn.net/download/qq_33200967/10679367
- makefile之strip函数
#$(strip <string> ) #名称:去空格函数--strip. #功能:去掉<string>字串中开头和结尾的空字符,并将中间的多个连续空字符(如果有的话)合并为一 ...
- imooc 生鲜超市笔记
1.启动前端项目(Vue.js) cnpm run dev
- dp之多重背包poj1276
题意:有现今cash,和n种钱币,每种钱币有ni个,价值为di,求各种钱币组成的不超过cash的最大钱数....... 思路:二进制拆分转化为01背包,或者转化为完全背包都是可以的. 反思:这个题目我 ...
- eclipse中tomcat配置JNDI链接Oracle数据源例子
最近换到新公司,第一次接触JNDI方式连接数据库. 一开始怎么找也没找到数据库地址在哪里配置的,后面跟代码发现spring中初始化dataSource是通过这个类JndiObjectFactoryBe ...
- buildroot 修改root密码后无法登录ssh解决方法
客户说想修改root密码后再登录ssh, 研究了一下,是因为ssh登录是匹配了之前的 密码生成文件,只要把之前的密码生成文件删除就可以. 过程如下: 删除 /etc/ssh/ssh_host*. rm ...
- socket相关函数中断后重试
慢系统调用accept,read,write被信号中断时应该重试.对于accept,如果errno为ECONNABORTED,也应该重试. connect虽然也会阻塞,但被信号中断时不能立即重试,该s ...
- Python高级编程之生成器(Generator)与coroutine(二):coroutine介绍
原创作品,转载请注明出处:点我 上一篇文章Python高级编程之生成器(Generator)与coroutine(一):Generator中,我们介绍了什么是Generator,以及写了几个使用Gen ...
- 使用JavaScript获取select元素选中的value和text
示例代码如下(js直接写在了html里面,没有写在一个单独的外部文件中): <!DOCTYPE html> <html> <head> <meta name= ...
- Linux编译安装PHP Mysql Nginx
安装gcc g++等编译器 yum -y install gcc gcc-c++ automake autoconf libtool glibc make 安装一些lnmp依赖的库 yum -y in ...