uva656 Optimal Programs
As you know, writing programs is often far from being easy. Things become even harder if your programs have to be as fast as possible. And sometimes there is reason for them to be. Many large programs such as operating systems or databases have ``bottlenecks'' - segments of code that get executed over and over again, and make up for a large portion of the total running time. Here it usually pays to rewrite that code portion in assembly language, since even small gains in running time will matter a lot if the code is executed billions of times.
In this problem we will consider the task of automating the generation of optimal assembly code. Given a function (as a series of input/output pairs), you are to come up with the shortest assembly program that computes this function.
The programs you produce will have to run on a stack based machine, that supports only five commands: ADD,SUB, MUL, DIV and DUP. The first four commands pop the two top elements from the stack and push their sum, difference, product or integer quotient1 , respectively, on the stack. The DUP command pushes an additional copy of the top-most stack element on the stack.
So if the commands are applied to a stack with the two top elements a and b (shown to the left), the resulting stacks look as follows:

At the beginning of the execution of a program, the stack will contain a single integer only: the input. At the end of the computation, the stack must also contain only one integer; this number is the result of the computation.
There are three cases in which the stack machine enters an error state:
- A DIV-command is executed, and the top-most element of the stack is 0.
- A ADD, SUB, MUL or DIV-command is executed when the stack contains only one element.
- An operation produces a value greater than 30000 in absolute value.
Input
The input consists of a series of function descriptions. Each description starts with a line containing a single integer n (
), the number of input/output pairs to follow. The following two lines contains nintegers each:
in the first line (all different), and
in the second line. The numbers will be no more than 30000 in absolute value.
The input is terminated by a test case starting with n = 0. This test case should not be processed.
Output
You are to find the shortest program that computes a function f , such that f(xi) = yi for all
. This implies that the program you output may not enter an error state if executed on the inputs xi(although it may enter an error state for other inputs). Consider only programs that have at most 10 statements.
For each function description, output first the number of the description. Then print out the se- quence of commands that make up the shortest program to compute the given function. If there is more than one such program, print the lexicographically smallest. If there is no program of at most 10 statements that computes the function, print the string ``Impossible''. If the shortest program consists of zero commands, print ``Empty sequence''.
Output a blank line after each test case.
Sample Input
4
1 2 3 4
0 -2 -6 -12
3
1 2 3
1 11 1998
1
1998
1998
0
Sample Output
Program 1
DUP DUP MUL SUB Program 2
Impossible Program 3
Empty sequence
Footnotes
- ... quotient1
- This corresponds to / applied to two integers in C/C++, and DIV in Pascal.
//http://uva.onlinejudge.org/external/6/656.html
#include<cstdio>
#include<cstring>
#include<cmath>
#include<stack>
#include<queue>
using namespace std;
const int maxn=10+5; const char * tr[] = {"ADD", "DIV", "DUP", "MUL", "SUB"};
enum op_e { ADD, DIV, DUP, MUL, SUB}; struct State {
State()
{
memset(path, 0, sizeof(path));
pathn=0;
}
stack<int> s;
int path[maxn];
int pathn;
}ans; int x[maxn], y[maxn];
int n; void init()
{
for(int i=0; i<n; i++)
scanf("%d", x+i);
for(int i=0; i<n; i++)
scanf("%d", y+i);
} // return true if trans is valid and modified t
bool trans(State& t, int i)
{
stack<int> &s = t.s;
//A ADD, SUB, MUL or DIV-command is executed when the stack contains only one element.
if(i!=DUP && s.size()==1) return false; int a=s.top();
if(i==DIV && a==0) return false; //当前栈的大小减去剩余步骤的大小,如果大于1,说明永远达不到目标(假设后面不是dup命令,则栈大小都是减一)
int len=s.size()-(10-t.pathn);
if(len>1) return false; //ok, now all options are valid
if(i==DUP)
{
s.push(a);
t.path[t.pathn++]=i;
return true;
} s.pop();//pop a
int b=s.top(); s.pop(); switch(i)
{
case ADD:
s.push(a+b);
break;
case SUB:
s.push(b-a);
break;
case MUL:
s.push(b*a);
break;
case DIV:
s.push(b/a);
break;
}
if(abs(s.top())>30000)
return false; t.path[t.pathn++]=i;
return true;
} bool checkOthers()
{
for (int i = 1; i < n; i++)
{
State t;
t.s.push(x[i]);
for(int j=0; j<ans.pathn; j++)
{
if(!trans(t, ans.path[j]))
return false;
}
if(t.s.top()!=y[i])
return false;
}
return true;
} bool bfs()
{
queue<State> q; ans = State();
State state;
state.s.push(x[0]);
q.push(state); while(!q.empty())
{
State front = q.front(); q.pop(); if(front.s.size()==1 && front.s.top()==y[0])
{
ans = front;
if(checkOthers())
return true;
} //已经10个了,不能再添加了
if(front.pathn==10)
continue; for(int i=ADD;i<=SUB;i++)
{
State t=front;
if(trans(t, i))
q.push(t);
}
}
return false;
} void solve() {
if (bfs()) {
if (ans.pathn == 0) printf("Empty sequence\n");
else {
for (int i = 0; i < ans.pathn - 1; i ++)
printf("%s ", tr[ans.path[i]]);
printf("%s\n", tr[ans.path[ans.pathn - 1]]);
}
}
else printf("Impossible\n");
printf("\n");
} int main()
{
#ifndef ONLINE_JUDGE
freopen("./uva656.in", "r", stdin);
#endif
int kase=0;
while(scanf("%d", &n)!=EOF && n)
{
init();
printf("Program %d\n", ++kase);
solve();
}
return 0;
}
uva656 Optimal Programs的更多相关文章
- POJ题目细究
acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP: 1011 NTA 简单题 1013 Great Equipment 简单题 102 ...
- BFS广搜题目(转载)
BFS广搜题目有时间一个个做下来 2009-12-29 15:09 1574人阅读 评论(1) 收藏 举报 图形graphc优化存储游戏 有时间要去做做这些题目,所以从他人空间copy过来了,谢谢那位 ...
- 泡泡一分钟:Optimal Trajectory Generation for Quadrotor Teach-And-Repeat
张宁 Optimal Trajectory Generation for Quadrotor Teach-And-Repeat链接:https://pan.baidu.com/s/1x0CmuOXiL ...
- 最优运输(Optimal Transfort):从理论到填补的应用
目录 引言 1 背景 2 什么是最优运输? 3 基本概念 3.1 离散测度 (Discrete measures) 3.2 蒙日(Monge)问题 3.3 Kantorovich Relaxation ...
- Optimal Flexible Architecture(最优灵活架构)
来自:Oracle® Database Installation Guide 12_c_ Release 1 (12.1) for Linux Oracle base目录命名规范: /pm/s/u 例 ...
- Leetcode: Optimal Account Balancing
A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...
- some simple recursive lisp programs
1. Write a procedure count-list to count the number of elements in a list (defun count-list (numbers ...
- (待续)C#语言中的动态数组(ArrayList)模拟常用页面置换算法(FIFO、LRU、Optimal)
目录 00 简介 01 算法概述 02 公用方法与变量解释 03 先进先出置换算法(FIFO) 04 最近最久未使用(LRU)算法 05 最佳置换算法(OPT) 00 简介 页面置换算法主要是记录内存 ...
- PLoP(Pattern Languages of Programs,程序设计的模式语言)
2014/8/1 12:24:21潘加宇 http://www.umlchina.com/News/Content/340.htmPloP大会2014即将举行 PLoP(Pattern Languag ...
随机推荐
- print()函数的end 参数
print()函数含end参数时:结束的时候已什么结尾,后面的参数可以是任何形式 [print() 默认以'\n' 结尾] 输出结果: print()函数不含end参数时: 输出结果:
- meta 标签的学习
meta name="viewport" content="width=device-width,initial-scale=1.0" 解释 <meta ...
- Spring Boot与Spring Security整合后post数据不了,403拒绝访问
http://blog.csdn.net/sinat_28454173/article/details/52251004 *************************************** ...
- 偏于SQL语句的 sqlAlchemy 增删改查操作
ORM 江湖 曾几何时,程序员因为惧怕SQL而在开发的时候小心翼翼的写着sql,心中总是少不了恐慌,万一不小心sql语句出错,搞坏了数据库怎么办?又或者为了获取一些数据,什么内外左右连接,函数存储过程 ...
- python 反编译模块uncompyle2的使用--附破解wingide5 方法
原来一直用pycharm,无奈它常常无法使用.来訪问一些模块的属性,朋友推荐了wingide,于是去官网下载了wingide5的最新版本号,仅仅有10天的试用期,就想能否用python的uncompy ...
- ipmitool sdr type Temperature sdr 从传感器获取某一类数据
1.1.1 常用监控命令总结.ipmitool sdr type Temperature 硬件监控 yum install OpenIPMI ipmitool ipmitool sdr type T ...
- 解决异常:Package should contain a content type part [M1.13]
http://blog.csdn.net/llwan/article/details/8890190 ————————————————————————————————————————————————— ...
- alert的美化,并且随滚动条滚动
onclick="sAlert('${vo.courseName}');" <script type="text/javascript" language ...
- Hadoop周边生态软件和简要工作原理(二)
转自: http://www.it165.net/admin/html/201307/1532.html Sqoop: sqoop在hadoop生态系统中也是应用率比较高的软件,主要是用来做ETL工具 ...
- (转)FS_S5PC100平台上Linux Camera驱动开发详解(二)
4-3 摄像头的初始化流程及v4l2子设备驱动 这个问题弄清楚了以后下面就来看获得Camera信息以后如何做后续的处理: 在fimc_init_global调用结束之后我们获得了OV9650的信息,之 ...