sklearn中的多项式回归算法

1、多项式回归法
多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加,然后基于升维后的数据集用线性回归的思路进行求解,从而得到相应的预测结果和各项的系数。


2、多项式回归的函数在pyhton的sklearn机器学习库中没有专门的定义,因为它只是线性回归方式的一种特例,但是我们自己可以按照多元线性回归的方式对整个过程进行相关的定义,然后包装成为一个函数进行相关的调用即可。
3、对于多项式回归方式的实现过程有以下两种:
(1)原理实现的过程代码(以一元二次函数的拟合为例):
import numpy as np
import matplotlib.pyplot as plt
x=np.random.uniform(-3,3,size=100)
X=x.reshape(-1,1)
y=0.5*x**2+x+2+np.random.normal(0,1,size=100)
plt.figure()
plt.scatter(x,y)
from sklearn.linear_model import LinearRegression
l1=LinearRegression()
l1.fit(X,y)
y_p=l1.predict(X)
plt.plot(X,y_p,"r")
print(l1.score(X,y))

###1-1多项式回归的思路(使用线性回归的的思路,添加新的特征即可,即原数据集的维数增加)
print((x**2).shape)
x2=np.hstack([X,X**2])
print(x2.shape)
L2=LinearRegression()
L2.fit(x2,y)
y_p2=L2.predict(x2)
plt.figure()
plt.scatter(x,y)
plt.plot(X,y_p,"g")
plt.plot(np.sort(x),y_p2[np.argsort(x)],"r") #输出多维数据时的拟合结果
plt.show()
print(L2.score(x2,y))
print(L2.coef_,L2.intercept_)

(2)sklearn中的整体实现过程:
#sklearn中的多项式回归和pipeline
import numpy as np
import matplotlib.pyplot as plt
x=np.random.uniform(-3,3,size=100)
X=x.reshape(-1,1)
y=0.5*x**2+x+2+np.random.normal(0,1,size=100)
from sklearn.preprocessing import PolynomialFeatures
p1=PolynomialFeatures(degree=2) #degree的含义是多项式数据中添加特征的最高次数
p1.fit(X)
x3=p1.transform(X)
print(x3.shape)
print(x3[:5,0])
print(x3[:5,1])
print(x3[:5,2])
print(x3[:5,])
from sklearn.linear_model import LinearRegression
l3=LinearRegression()
l3.fit(x3,y)
y_p3=l3.predict(x3)
plt.figure()
plt.scatter(x,y)
plt.plot(np.sort(x),y_p3[np.argsort(x)],"r")
plt.show()
print(l3.score(x3,y))
print(l3.coef_,L2.intercept_)
print(x3.shape)

(3)利用上述原理进行函数的自我封装调用代码:
#自己封装一个多项式回归的函数
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
def polynomialRegression(degree):
       return Pipeline([("poly",PolynomialFeatures(degree=degree)),
                                   ("std_scaler",StandardScaler()),
                                   ( "lin_reg",LinearRegression())
                                    ])
poly2_reg=polynomialRegression(10)
poly2_reg.fit(X,y)
y2=poly2_reg.predict(X)
print(mean_squared_error(y,y2))
print(poly2_reg.score(X,y))
plt.figure()
plt.scatter(X,y)
plt.plot(np.sort(x),y2[np.argsort(x)],"r")
plt.show()
x1=np.linspace(-3,3,100).reshape(100,1)
y11=poly2_reg.predict(x1)
plt.plot(x1,y11,"r")
#plt.axis([-3,3,-1,10])
plt.show()
运行结果如下所示:

sklearn中的多项式回归算法的更多相关文章

  1. 【笔记】多项式回归的思想以及在sklearn中使用多项式回归和pipeline

    多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时 ...

  2. sklearn中调用PCA算法

    sklearn中调用PCA算法 PCA算法是一种数据降维的方法,它可以对于数据进行维度降低,实现提高数据计算和训练的效率,而不丢失数据的重要信息,其sklearn中调用PCA算法的具体操作和代码如下所 ...

  3. 机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述

    概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提 ...

  4. sklearn中的KMeans算法

    1.聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇).这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布. 2.KMeans算法将一 ...

  5. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  6. 机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform

    重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵 ...

  7. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  8. 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维

    PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...

  9. 机器学习实战基础(二十二):sklearn中的降维算法PCA和SVD(三) PCA与SVD 之 重要参数n_components

    重要参数n_components n_components是我们降维后需要的维度,即降维后需要保留的特征数量,降维流程中第二步里需要确认的k值,一般输入[0, min(X.shape)]范围中的整数. ...

随机推荐

  1. java代码开启关闭线程(nginx)

    源码: import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; pub ...

  2. 【PAT甲级】1045 Favorite Color Stripe (30 分)(DP)

    题意: 输入一个正整数N(<=200),代表颜色总数,接下来输入一个正整数M(<=200),代表喜爱的颜色数量,接着输入M个正整数表示喜爱颜色的编号(同一颜色不会出现两次),接下来输入一个 ...

  3. python中解方程

    from sympy import * import numpy as np from numpy import linalg # 方程中的符号 x = Symbol('x') # 计算 result ...

  4. 【网摘】JS 或 jQuery 获取当前页面的 URL 信息

    1.设置或获取对象指定的文件名或路径. window.location.pathname 2.设置或获取整个 URL 为字符串. window.location.href 3.设置或获取与 URL 关 ...

  5. SpringBoot集成Freemarker前端模板

    1.在pom.xml中引入freemarker的jar包 <dependency> <groupId>org.springframework.boot</groupId& ...

  6. JavaScript - 包装类型

    1. 概念 基本类型是没有方法的 包装类型作用是为了方便操作基本数据类型 // 下面代码的问题? // s1是基本类型,基本类型是没有方法的 var s1 = 'zhangsan'; var s2 = ...

  7. dmidecode查看硬件信息

    //check memory,cpu,system,biosroot@dellemc-diag-os:/home# dmidecode -t Memoryroot@dellemc-diag-os:/h ...

  8. 安卓LED跑马灯 超炫酷的表白神器破解版

    链接:https://pan.baidu.com/s/11Wxll4iLdcEPq0wUBK6Ong 提取码:all4

  9. 数据库转换Mysql-Oracle之建表语句

    Mysql建库语句(导出的): DROP TABLE IF EXISTS `tablename`; CREATE TABLE `tablename` ( `C_DI_CDE` varchar(40) ...

  10. scala命令行界面:help

    :help 查看所有可用命令 scala> :helpAll commands can be abbreviated, e.g., :he instead of :help.:edit < ...