对于模型的优化,我们可以通过适当修改网络基本配置信息完成训练上的优化。

yolov3.cfg文件:


[net]
# Testing #测试模式
batch=1
subdivisions=1
# Training #训练模式 每次前向图片的数目=batch/subdivisions
# batch=64
# subdivisions=16
#关于batch与subdivision:在训练输出中,训练迭代包括8组,这些batch样本又被平均分成subdivision=8次送入网络参与训练,以减轻内存占用的压力;batch越大,训练效果越好,subdivision越大,占用内存压力越小


width=416
height=416
channels=3
#网络输入的宽、高、通道数这三个参数中,要求width==height, 并且为32的倍数,大分辨率可以检测到更加细小的物体,从而影响precision


momentum=0.9 #动量,影响梯度下降到最优的速度,一般默认0.9
decay=0.0005 #权重衰减正则系数,防止过拟合
angle=0 #旋转角度,从而生成更多训练样本
saturation = 1.5 #调整饱和度,从而生成更多训练样本
exposure = 1.5 #调整曝光度,从而生成更多训练样本
hue=.1 #调整色调,从而生成更多训练样本


learning_rate=0.001
#学习率决定了权值更新的速度,学习率大,更新的就快,但太快容易越过最优值,而学习率太小又更新的慢,效率低,一般学习率随着训练的进行不断更改,先高一点,然后慢慢降低,一般在0.01--0.001

burn_in=1000
#学习率控制的参数,在迭代次数小于burn_in时,其学习率的更新有一种方式,大于burn_in时,才采用policy的更新方式
max_batches = 50200
#迭代次数,1000次以内,每训练100次保存一次权重,1000次以上,每训练10000次保存一次权重
policy=steps # 学习率策略,学习率下降的方式
steps=40000,45000 #学习率变动步长
scales=.1,.1
#学习率变动因子:如迭代到40000次时,学习率衰减十倍,45000次迭代时,学习率又会在前一个学习率的基础上衰减十倍


[convolutional]
batch_normalize=1 #BN
filters=32 #卷积核数目
size=3 #卷积核尺寸
stride=1 #做卷积运算的步长
pad=1
#如果pad为0,padding由 padding参数指定;如果pad为1,padding大小为size/2,padding应该是对输入图像左边缘拓展的像素数量

activation=leaky #激活函数类型


[yolo]
mask = 6,7,8 #使用anchor时使用前三个尺寸
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
#anchors是可以事先通过cmd指令计算出来的,是和图片数量,width,height以及cluster(就是下面的num的值,即想要使用的anchors的数量)相关的预选框,可以手工挑选,也可以通过k-means算法从训练样本中学出


classes=20
num=9
#每个grid cell预测几个box,和anchors的数量一致。当想要使用更多anchors时需要调大num,且如果调大num后训练时Obj趋近0的话可以尝试调大object_scale
jitter=.3 #通过抖动来防止过拟合,jitter就是crop的参数
ignore_thresh = .5
#ignore_thresh 指得是参与计算的IOU阈值大小。当预测的检测框与ground true的IOU大于ignore_thresh的时候,参与loss的计算,否则,检测框的不参与损失计算,目的是控制参与loss计算的检测框的规模,当ignore_thresh过于大,接近于1的时候,那么参与检测框回归loss的个数就会比较少,同时也容易造成过拟合;而如果ignore_thresh设置的过于小,那么参与计算的会数量规模就会很大。同时也容易在进行检测框回归的时候造成欠拟合。
#参数设置:一般选取0.5-0.7之间的一个值,之前的计算基础都是小尺度(13*13)用的是0.7,(26*26)用的是0.5。这次先将0.5更改为0.7。
truth_thresh = 1
random=1 #如果显存小,设置为0,关闭多尺度训练,random设置成1,可以增加检测精度precision,每次迭代图片大小随机从320到608,步长为32,如果为0,每次训练大小与输入大小一致

 

注:模型一般到20000次的时候就基本收敛了

如果想添加新的层,需要添加相应的源码(src)

参考博客:https://blog.csdn.net/qq_43211132/article/details/91978149

yolov3.cfg参数解读的更多相关文章

  1. main(int argc, char **argv)参数解读

    main(int argc, char **argv)参数解读 编译生成了test.exe ,然后在控制台下相应的目录下输入:test  1  2  3 4 argc就是一个输入了多少个参数,包括te ...

  2. yolov2-tiny-voc.cfg 参数解析

    一.参数解析 [net] batch=64 # number of images pushed with a forward pass through the network subdivisions ...

  3. Hi3559AV100 NNIE开发(4)mobilefacenet.cfg参数配置挖坑解决与SVP_NNIE_Cnn实现分析

    前面随笔给出了NNIE开发的基本知识,下面几篇随笔将着重于Mobilefacenet NNIE开发,实现mobilefacenet.wk的chip版本,并在Hi3559AV100上实现mobilefa ...

  4. 一元回归_ols参数解读(推荐AAA)

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  5. Java8 JVM参数解读

    附录:https://www.liangzl.com/get-article-detail-134315.html 摘要: 我们知道java虚拟机启动时会带有很多的启动参数,Java命令本身就是一个多 ...

  6. postgresql压力测试工具用法以及参数解读

    pgbench是PostgreSQL自带的一个数据库压力测试工具, 支持TPC-B测试模型, 或自定义测试模型. 自定义测试模型支持元命令, 调用shell脚本, 设置随机数, 变量等等. 支持3种异 ...

  7. jquery方法的参数解读

    18:22 2013/9/21 attr(name|properties|key,value|fn) 概述 设置或返回被选元素的属性值. 在jquery中[]表示可选参数,你可以不选,| 表示参数可以 ...

  8. ORACLE——RMAN 参数解读

    查看默认rman配置参数 oracle用户下登录rman:rman target / 查看所有配置参数详情:show all show all的第一行:using target database co ...

  9. Oracle11g dump 部分参数解读

    一.Oracle dump expdp CONTENT   ALL  ALL ,将导出对象定义及其所有数据  DATA_ONLY  DATA_ONLY,只导出对象数据  METADATA_ONLY   ...

随机推荐

  1. 【python-leetcode25-翻转链表】K 个一组翻转链表

    问题描述: 给你一个链表,每 k 个节点一组进行翻转,请你返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度. 如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序. 示例 ...

  2. loadrunner 接口测试实战

    直接上代码: web_reg_save_param("Name",   //这个函数是为了获取服务器返回的值.我这个接口的返回值是这样子的 //将服务器返回的值放在Name里,Na ...

  3. Uart学习笔记

    分享一个蛮好的链接:https://blog.csdn.net/wordwarwordwar/article/details/73662379 今天在看的资料是S家的DW_apb_uart的官方文档. ...

  4. RESTful风格化

    RESTful Web Service介绍 Roy Thomas Fielding博士2000年提出的 REST是英文Representational State Transfer的缩写 表象化状态转 ...

  5. Windows Android SDK下载安装,配置,异常问题解决教程

    团队编程项目终于开始了,相信大家都在如火如荼的准备的当中,这里念半整理了一份还比较全面的关于 Android SDK的下载安装的教程,当然如果你说你们小组的实验环境选择的是Android studio ...

  6. CPD

    CPD,Cost per day的缩写,意思是按天收费,是一种广告合作方式.在实际的广告合作中根据行业不同还包括Cost per Download的缩写含义,意思是依据实际下载量收费.

  7. 解决 U2000 R017 安装报错: 检查SQL server数据库环境变量信息 ( 异常 ) [ 详细信息 ] PATH环境变量中缺少数据库路径的信息

    U2000 R017 安装报错: 检查SQL server数据库环境变量信息 ( 异常 ) [ 详细信息 ] PATH环境变量中缺少数据库路径的信息 管理员模式打开注册表位置: HKEY_LOCAL_ ...

  8. 利用django打造自己的工作流平台(二):疫情统计系统

    相关文章: 利用django打造自己的工作流平台(一):从EXCEL到流程化运作 本文是“利用django打造自己的工作流平台”系列文章的第二篇,在自己开发的工作流平台中添加了一个用于排查统计可能受感 ...

  9. hbase meta中分区信息错误的记录

    bulk write hbase 时遇到下面的错误: 19/03/20 02:16:02 ERROR LoadIncrementalHFiles: IOException during splitti ...

  10. JuJu Beta Postmortem

    JuJu demo demo 项目github地址 JuJu   设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 完成基于Julia语言的NER mod ...