Hive Join优化经验
大表x小表
这里可以利用mapjoin,SparkSQL中也有mapjoin或者使用广播变量能达到同样效果,此处描述HQL
// 开启mapjoin并设定map表大小
set hive.auto.convert.join.noconditionaltask = true;
set hive.auto.convert.join.noconditionaltask.size = ;
// 大表 join 小表
select * from big_table join small_table on big_table.id=small_table.id
原理:将小表加载进入节点容器内存中,大表可以直接读取节点容器内存中的数据进行匹配过滤
大表x大表
小表可以放进内存,大表则不行。尽量避免大表x大表的执行需求。如果确认有此需求,可以参考以下方法
1.尝试将大右表自我join成为一张宽表
// 利用右表的唯一属性自我join
select id, case when type='food' then else as type_tag,case when
sale_type='city' then sales else null as sale_amount from group by id
2.尝试先将大表按照主键分桶后join
create table new_left as select * from left_table cluster by id
create table new_right as select * from right_table cluster by id
select * from new_left join new_right on new_left.id=new_right.id
3.根据数据大小量级合理增加reduce数量,reduce不宜设置过大
// hadoop2代
set mapreduce.job.reduces=;
4.利用ORC bloomfilter, 大幅度提高join效率
注:parquet bloomfilter在开发中
// 建立orc表
create table default.right_orc stored as orcfile TBLPROPERTIES
('orc.compress'='SNAPPY',
'orc.create.index'='true',
'orc.bloom.filter.columns'='id')
as select * from right_table
// 使用新表join
select * from left_orc join right_orc on left_orc.id=righ_orc.id
5.调整内存限制
join时容易造成节点OOM,导致任务失败,可以尝试以下方法:
map阶段OOM,适当增加map阶段内存 set mapreduce.map.memory.mb=3096
reduce阶段OOM,适当增加reduce阶段内存 set mapreduce.reduce.memory.mb=4096
注: 默认执行引擎为mr,如果是TEZ,参考tez优化部分
6.善用explain/analyze
使用explain和analyze分析HQL语句和表,试图从中找出实际数据中可以优化的部分,这里和数据强关联,需要根据实际数据考量
7.数据预处理。
将部分join放入离线计算任务,减少业务join的时间
整理自apache spark技术交流社区
Hive Join优化经验的更多相关文章
- Hive Join优化
在阐述Hive Join具体的优化方法之前,首先看一下Hive Join的几个重要特点,在实际使用时也可以利用下列特点做相应优化: 1. 只支持等值连接 2. 底层会将写的HQL语句转换为MapRed ...
- hive join 优化 --小表join大表
1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去red ...
- hive join 优化
common join : 即reducer join,瓶颈在shuffle阶段,会产生较大的网络io: map join:即把小表放前面,扫描后放入每个节点的内存,在map阶段进行匹配: 开启map ...
- hive的join优化
“国际大学生节”又称“世界大学生节”.“世界学生日”.“国际学生日”.1946年,世界各国学生代表于布拉格召开全世界学生大会,宣布把每年的11月17日定为“世界大学生节”,以加强全世界大学生的团结和友 ...
- Hive篇---Hive使用优化
一.前述 本节主要描述Hive的优化使用,Hive的优化着重强调一个 把Hive SQL 当做Mapreduce程序去优化 二.主要优化点 1.Hive运行方式:本地模式集群模式 本地模式开启本地模式 ...
- Hive性能优化【严格模式、join优化、Map-Side聚合、JVM重用】
一.严格模式 通过设置以下参数开启严格模式: >set hive.mapred.mode=strict;[默认为nonstrict非严格模式] 查询限制: 1.对于分区表,必须添加where查询 ...
- Hive性能优化
1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先 ...
- Hive性能优化上的一些总结
https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据 ...
- Hive性能优化(全面)
1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 ...
随机推荐
- Codeforces #617 (Div. 3) D. Fight with Monsters(贪心,排序)
There are nn monsters standing in a row numbered from 11 to nn . The ii -th monster has hihi health ...
- Spring Boot项目中各配置文件的对比
application.properties是Spring Boot的全局配置文件,放在src/main/resources目录下或者类路径的/config下,作用是对一些默认配置的配置值进行修改. ...
- QT5静态编译工程(arm交叉编译)
1.首先,QT编译环境默认是动态库,要编译静态程序是不可能的,所以要下载QT源码,重新编译QT编译环境 2.下载QT源码(5.13版本):http://download.qt.io/developme ...
- Codeforces1304F.Animal Observation
分析一下得知是DP问题,时间复杂度符合,设dp[i][j]为从第i天开始,第j个位置能得到的最大值,其有三种转移状态 1.与上一天的选择有重合 2.与上一天的选择没有重合,且上一天的选择在左边 3.与 ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 按钮:用于要弹出信息的按钮
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- Vue二次精度随笔(1)
1.button.input标签的disabled属性 该标签可以控制按钮是否可用,如果他的值为以上几种的话,则他都不会在标签上渲染出这个属性,一旦这个属性出现的话,就说明他是禁用的 2.移除动态绑定 ...
- Django 3.0 中连接mysql 8.0,可以不使用pymysql ,升级Mysqlclient即可
python 中,连接mysql一般都推荐用pymysql ,而且在django中,网上的教程都是这么连接mysql的. import pymysql pymysql.install_as_MySQL ...
- php注册与登录
一.注册 1.注册界面 <!DOCTYPE html><html lang="en"><head> <meta charset=" ...
- 网站Webshell大马密码极速暴力爆破工具-cheetah
Cheetah是一个基于字典的暴力密码webshell工具,运行速度与猎豹猎物一样快. Cheetah的工作原理是能根据自动探测出的web服务设置相关参数一次性提交大量的探测密码进行爆破,爆破效率 ...
- MongoDB分片技术原理和高可用集群配置方案
一.Sharding分片技术 1.分片概述 当数据量比较大的时候,我们需要把数分片运行在不同的机器中,以降低CPU.内存和Io的压力,Sharding就是数据库分片技术. MongoDB分片技术类似M ...