最小二乘法则是一种统计学习优化技术,它的目标是最小化误差平方之和来作为目标J(θ)J(θ),从而找到最优模型。

7. SciPy最小二乘法

最小二乘法则是一种统计学习优化技术,它的目标是最小化误差平方之和来作为目标J(θ),从而找到最优模型。

1、线性最小二乘法

假设真实的模型是y=2x+1,我们有一组数据(xi,yi)共100个,看能否基于这100个数据找出xi和yi的线性关系方程y=2x+1?我们可以通过以下几步来完成。

1).首先是通过程序构造出100个(xi,yi)数据。

xi = x + np.random.normal(0, 0.05, 100)

yi = 1 + 2 * xi + np.random.normal(0, 0.05, 100)

2).接下来给出模型f(x)=a+bx的矩阵A,由于有100个观测(xi,yi)的数据,那么就有:

将以上式子写成如下矩阵的形式:

A = np.vstack([xi**0, xi**1])

AT即100×2的那个矩阵

3).调用scipy.linalg.lstsq传入AT和观测值里的yii即程序里的yi变量即可求得f(x)=a+bx里的a和b。a和b记录在lstsq函数的第一个返回值里。

sol, r, rank, s = la.lstsq(A.T, yi)

4). scipy.linalg.lstsq的第一个返回值sol共有两个值,sol[0]即是估计出来的f(x)=a+bx里a,sol[1]代表f(x)=a+bx里b。因此f(x)为:

y_fit = sol[0] + sol[1] * x

至此找到了这100个(xi,yi)的模型方程。从print sol语句的输出结果可以看出数据还是比较接近y=2x+1的。

完整的代码如下所示:

import scipy.linalg as la
import numpy as np
import matplotlib.pyplot as plt
m = 100
x = np.linspace(-1, 1, m)
y_exact = 1 + 2 * x
xi = x + np.random.normal(0, 0.05, 100)
yi = 1 + 2 * xi + np.random.normal(0, 0.05, 100)
A = np.vstack([xi**0, xi**1])
sol, r, rank, s = la.lstsq(A.T, yi) #求取各个系数大小
y_fit = sol[0] + sol[1] * x
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(xi, yi, 'go', alpha=0.5, label='Simulated data')
ax.plot(x, y_exact, 'k', lw=2, label='True value y = 1 + 2x')
ax.plot(x, y_fit, 'b', lw=2, label='Least square fit')
ax.set_xlabel("x", fontsize=18)
ax.set_ylabel(”y", fontsize=18)
ax.legend(loc=2) #设置曲线标注位置
plt.show()

2、二次函数最小二乘法
这个程序和上面的程序差不多,只不过模型变成了f(xi)=a+bx+cx2f(xi)=a+bx+cx2了而已,请自己分析分析。
完整程序如下:
import scipy.linalg as la
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-1, 1, 100)
a, b, c = 1, 2, 3
y_exact = a + b * x + c * x**2
m = 100
xi=1 - 2 * np.random.rand(m)
yi=a + b * xi + c * xi**2 + np.random.randn(m)
A = np.vstack([xi**0, xi**1, xi**2])
sol, r, rank, s = la.lstsq(A.T, yi)
y_fit = sol[0] + sol[1] * x + sol[2] * x**2
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(xi, yi, 'go', alpha=0.5, label='Simulated data')
ax.plot(x, y_exact, 'k', lw=2, label='True value $y = 1 + 2x + 3x^2$')
ax.plot(x, y_fit, 'b', lw=2, label='Least square fit')
ax.set_xlabel("x", fontsize=18)
ax.set_ylabel("y", fontsize=18)
ax.legend(loc=2)
plt.show()
具体结果展示如下:


 

pyhton scipy最小二乘法(scipy.linalg.lstsq模块)的更多相关文章

  1. 矩阵压缩写法 scipy spark.ml.linalg里都有,CRS,CCS

    CRS 表示:Compressed Row Storage CCS 表示:Compressed Column Storage CRS的表示参考: https://blog.csdn.net/buptf ...

  2. scipy笔记—scipy.misc.imresize用法(方便训练图像数据)

    scipy.misc.imresize 不同于普通的reshape, imresize不是单纯的改变图像矩阵的维度,而是能将图片重采样为指定像素,这样给深度学习中训练图像数据带来方便. import ...

  3. Pyhton 学习总结 21 :fileinput模块

    fileinput模块可以对一个或多个文件中的内容进行迭代.遍历等操作.该模块的input()函数有点类似文件readlines()方法,区别在于前者是一个迭代对象,需要用for循环迭代,后者是一次性 ...

  4. Pyhton开发堡垒机之paramiko模块

    堡垒机前戏 开发堡垒机之前,先来学习Python的paramiko模块,该模块机遇SSH用于连接远程服务器并执行相关操作 SSHClient 用于连接远程服务器并执行基本命令 基于用户名密码连接: + ...

  5. 结合scipy.linalg在Python中使用线性系统

    摘要:将线性代数概念应用到实际问题中scipy.linalg 使用 Python 和 NumPy处理向量和矩阵 使用线性系统模拟实际问题 使用求解线性系统 scipy.linalg 本文分享自华为云社 ...

  6. Scipy学习笔记 矩阵计算

    Scipy学习笔记 非本人原创  原链接 http://blog.sina.com.cn/s/blog_70586e000100moen.html 1.逆矩阵的求解 >>>impor ...

  7. Python教程:进击机器学习(五)--Scipy《转》

    Scipy简介 文件输入和输出scipyio 线性代数操作scipylinalg 快速傅里叶变换scipyfftpack 优化器scipyoptimize 统计工具scipystats Scipy简介 ...

  8. 1.5 Scipy:高级科学计算

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&am ...

  9. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. 最长公共子序列/子串 LCS(模板)

    首先区分子序列和子串,序列不要求连续性(连续和不连续都可以),但子串一定是连续的 1.最长公共子序列 1.最长公共子序列问题有最优子结构,这个问题可以分解称为更小的问题 2.同时,子问题的解释可以被重 ...

  2. js 中一些重要的字符串方法

    String 对象方法 方法 描述 charAt() 返回在指定位置的字符. charCodeAt() 返回在指定的位置的字符的 Unicode 编码. concat() 连接两个或更多字符串,并返回 ...

  3. Java 并发锁

    Java 中的锁 阻塞锁.可重入锁.读写锁.互斥锁.悲观锁.乐观锁.公平锁.偏向锁.对象锁.线程锁.锁粗化.锁消除.轻量级锁.重量级锁.信号量.独享锁.共享锁.分段锁 一.常见的锁 synchroni ...

  4. Windows驱动开发-手动创建IRP

    手动创建IRP有以下几个步骤: 1,先得到设备的指针,一种方法是用IoGetDeviceObjectPointer内核函数得到设备对象指针,另外一种方法是用zwCreateFile内核函数先得到设备句 ...

  5. [NOI 2011]NOI 嘉年华

    Description 题库链接 给你 \(n\) 个区间,让你选出其中一些分为两组,要求两组区间不能有交集,组内可以有交集.让你最大化两组之间区间个数较小的那一组的选取区间个数.以及对于每个区间 \ ...

  6. 使用gitthub 创建项目搭建博客

    最近在学Andrew Ng 的机器学习,做了上买那个的练习题和变成作业,想着把自己做的编程作业放到GitHub,方便讨论,虽然之前注册了GitHub,但这两年整天在毕设方向的事,做的身心俱疲,再加上自 ...

  7. Spring Boot+Jpa(MYSQL)做一个登陆注册系统(前后端数据库一站式编程)

    Spring Boot最好的学习方法就是实战训练,今天我们用很短的时间启动我们第一个Spring Boot应用,并且连接我们的MySQL数据库. 我将假设读者为几乎零基础,在实战讲解中会渗透Sprin ...

  8. Python - 列表与字符串的相互转换

    1. 列表转换成字符串,用''.join() # 创建一个列表 list1 = ['a','b','c'] # 将列表的元素拼接为字符串 print(''.join(list1)) # 将列表的元素通 ...

  9. 如何查看python的notebook文件.ipynb

    文章中的ipython notebook和jupyter notebook基本可以互换,不过使用ipython notebook会警告您要使用jupyter notebook.其他没有区别. ---- ...

  10. vue项目真机测试

    1.在项目中重启命令行运行ipconfig(如果是ios系统运行ifconfig)获取到项目在本机运行的ip地址 2.在项目的package.json中修改允许访问ip地址(--host 0.0.0. ...