POJ3352 Road Construction Tarjan+边双连通
题目链接:http://poj.org/problem?id=3352
题目要求求出无向图中最少需要多少边能够使得该图边双连通。
在图G中,如果任意两个点之间有两条边不重复的路径,称为“边双连通”,去掉任何一条边都是其他边仍然是连通的,也就是说边双连通图中没有割边。
算法设计是:运用tarjan+缩点。对于每一个边双连通分量,我们都可以把它视作一个点,因为low值相同的点处在同一个边双连通分量中,可以简单地思考一下,(u,v)之间有两条可达的路径,dfs一定可以从一条路开始搜索并且从另一条路回去。而边双连通分量最初开始搜索的一个点的编号就是这个边双连通分量的low值,因为假设这个点的low值更加靠前的话,他与之前的结点一定是边双连通的关系,有一条边搜索到这个点,这个点在之后还有一条不重合的路径能到达先前那个结点,与边双连通分量的最大性产生矛盾,其实我们也可以把那个点收纳进这个边连通分量,把它作为该连通分量第一个进入dfs树的结点。故有边双连通分量中的点low值相同。
最终将这些点变成一个新的点图,这个点图中最大的边双连通分量就是一个点,所以我们只要看在这张图中需要加多少条边可以使得它边双连通就行。可以证明使得缩点图边双连通加上的边数是 (1+度数为1的点的数量)/2。由于这些缩点的low值都是不同的,所以我们可以用low值作为degree(点的度数)的索引。计算度数的时候时候扫描所有的点,只要跟一个low值不同的点有边,那么该low值(缩点)一定有一个外界的度(可看成入度),最后统计最终的只有一个度的连通分量数量即可。
用下面这张图同样可以证明为什么边双连通分量中的dfs中更新low值为什么是代码中所说的那样一个过程,因为low[3]是等于1的,而3的dfs顺序,就是dfn[3]=3,到了五号结点的时候,我们发现有回退边(5,3)如果此时我们用3的dfn值来更新5的low值的话就会发现5的low是3,回溯之后发现1,2,3结点low值是1,而4,5结点的low值是3,这样真的正确吗?很遗憾是错误的,为什么呢?我们可以发现,是因为在五号结点访问边(5,3)的时候错过了3号节点的回退边(3,1)在边双连通分量的计算中,回退边是需要包括在内的,这样dfs搜索到这个点之后这个点可以通过多条回退边跳回一个low=dfn结点,这个结点的low值就是他要更新成为的值。故边双连通分量中low的计算可以说是十分简洁但是要区分开和其他tarjan算法的low值计算策略,主要tarjan的这个low值太牛逼了!!!包含了太多的信息orz

代码如下:
#include<cstring>
#include<vector>
#include<stdio.h>
using namespace std;
const int maxn =;
int n,m,low[maxn],dfn;
vector<int>G[maxn];
void dfs(int u,int fa)//先用dfs处理处每个点的low值,以便相同的low值合并
{//处理low值时不需要处理dfn数组
low[u]=++dfn;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(v==fa)continue;//保证dfs 树的前向性
if(!low[v])
dfs(v,u);
low[u]=min(low[u],low[v]);
}
}
int tarjan()
{
int degree[maxn];
memset(degree,,sizeof(degree));
for(int i=;i<=n;i++)
{
for(int j=;j<G[i].size();j++)
{
if(low[i]!=low[G[i][j]])
degree[low[i]]++;
}
}
int res=;
for(int i=;i<=n;i++)
{
if(degree[i]==)res++;
}
return res;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
int x,y;
memset(low,,sizeof(low));
for(int i=;i<=n;i++)G[i].clear();
while(m--)
{
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
dfn=;//每次dfs之前设置dfs树的编号从1开始
dfs(,-);
int ans=tarjan();
printf("%d\n",(ans+)/);
}
return ;
}
POJ3352 Road Construction Tarjan+边双连通的更多相关文章
- POJ-3352 Road Construction,tarjan缩点求边双连通!
Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...
- poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】
Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10141 Accepted: 503 ...
- POJ3352 Road Construction(边双连通分量)
...
- [POJ3352]Road Construction
[POJ3352]Road Construction 试题描述 It's almost summer time, and that means that it's almost summer cons ...
- POJ3352 Road Construction (双连通分量)
Road Construction Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ3352 Road Construction 双连通分量+缩点
Road Construction Description It's almost summer time, and that means that it's almost summer constr ...
- POJ 3352 Road Construction(边—双连通分量)
http://poj.org/problem?id=3352 题意: 给出一个图,求最少要加多少条边,能把该图变成边—双连通. 思路:双连通分量是没有桥的,dfs一遍,计算出每个结点的low值,如果相 ...
- poj 3177 Redundant Paths(tarjan边双连通)
题目链接:http://poj.org/problem?id=3177 题意:求最少加几条边使得没对点都有至少两条路互通. 题解:边双连通顾名思义,可以先求一下连通块显然连通块里的点都是双连通的,然后 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
随机推荐
- 正则表达式入门-python代码
题记 本文介绍了Python对于正则表达式的支持,包括正则表达式基础以及Python正则表达式标准库的完整介绍及使用示例. 正则表达式在很多的应用中都有使用到,特别是在网络爬虫中格式化html后取出自 ...
- Hexo之旅(四):文章编写技巧
hexo 编写文章可以使用以下命令创建hexo new "文件名" #创建的文章会在_pots目录下文章的后缀名是以md命名的文件格式,遵循markdown语法,所以编写文章可以使 ...
- Oracle字段
pl/sql查看当前数据库编码语句:select userenv('language') from dual; 测试结果:数据库字符集编码是utf-8 1.nvarchar2(size) ,size不 ...
- spring——AOP原理及源码(一)
教程共分为五篇,从AOP实例的构建及其重要组件.基本运行流程.容器创建流程.关键方法调用.原理总结归纳等几个方面一步步走进AOP的世界. 本篇主要为读者演示构建AOP实例及AOP核心组件分析. 一.项 ...
- Java入门教程四(字符串处理)
Java 语言的文本数据被保存为字符或字符串类型.字符及字符串的操作主要用到 String 类和 StringBuffer 类,如连接.修改.替换.比较和查找等. 定义字符串 直接定义字符串 直接定义 ...
- 正式学习MVC 04
1.ActionResult ActionResult是一个父类, 子类包括了我们熟知的 ViewResult 返回相应的视图 ContentResult 返回字符串 RedirectResult( ...
- chorme浏览器记住密码后input黄色背景处理方法总结(三种)
问题分析 正常情况: 记住密码后访问: 解决方法 方法1:阴影覆盖input:-webkit-autofill { -webkit-box-shadow: 0 0 0 1000px white ins ...
- 有史以来最全的CMD命令
说在前面的话: 本篇是博主通过网上查找整理而成的,且都是亲测可以的一些cmd命令,可以说是很齐全了,当然,如果有不可以运行的代码,欢迎大家留言指出,我会不断完善的,谢谢. CMD作用: 掌握一些基本的 ...
- sf-git机制
为什么要专门写一篇关于sf科技公司的GIT管理机制呢?因为本周经历了两天的学习和考试,刚开始没在意,因为之前公司也用的GIT,所以没怎么看视频,就看了文档,练习考试时候才发现并非以前的那种git流程, ...
- 2019-2020-3 20174318张致豪《网络对抗技术》Exp2 后门原理与实践
Exp2 后门原理与实践 前期准备 一.实验目标与基础知识 1.1 实践目标 使用netcat获取主机操作Shell,cron启动 使用socat获取主机操作Shell,任务计划启动 使用MSF m ...