给不明白深度学习能干什么的同学,感受下深度学习的power

import tensorflow as tf
import numpy as np #使用numpy生成100个随机点
x_data=np.random.rand(100)
y_data=x_data*0.1+0.2 #这里我们设定已知直线的k为0.1 b为0.2得到y_data #构造一个线性模型
b=tf.Variable(0.)
k=tf.Variable(0.)
y=k*x_data+b #二次代价函数(白话:两数之差平方后取 平均值)
loss=tf.reduce_mean(tf.square(y_data-y))
#定义一个梯度下降法来进行训练的优化器(其实就是按梯度下降的方法改变线性模型k和b的值,注意这里的k和b一开始初始化都为0.0,后来慢慢向0.1、0.2靠近)
optimizer=tf.train.GradientDescentOptimizer(0.2) #这里的0.2是梯度下降的系数也可以是0.3...
#最小化代价函数(训练的方式就是使loss值最小,loss值可能是随机初始化100个点与模型拟合出的100个点差的平方相加...等方法)
train=optimizer.minimize(loss) #初始化变量
init=tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step%20==0:
print(step,sess.run([k,b])) #这里使用fetch的方式只是打印k、b的值,每20次打印一下,改变k、b的值是梯度下降优化器的工作

贴一张我的运行结果:

看,k和b在一步步逼近0.1和0.2,是不是很神奇!最终的误差仅为0.000026526和0.00001402,厉害吧,感受到深度学习的强大了么,这里还只是一个神经元,如果成千上万个甚至几十万个会有什么效果呢?

这就是深度学习的power,当然前提是你得配上tensorflow的接口,才能快速高效的搭建自己的神经网络。

目录:

  1. tensorflow简介、目录
  2. tensorflow中的图(02-1)
  3. tensorflow变量的使用(02-2)
  4. tensorflow中的Fetch、Feed(02-3)
  5. tensorflow版helloworld---拟合线性函数的k和b(02-4)
  6. tensorflow非线性回归(03-1)
  7. MNIST手写数字分类simple版(03-2)
  8. 二次代价函数、交叉熵(cross-entropy)、对数似然代价函数(log-likelihood cost)(04-1)
  9. 多层网络通过防止过拟合,增加模型的准确率(04-2)
  10. 修改优化器进一步提升准确率(04-3)
  11. 手写数字识别-卷积神经网络cnn(06-2)
  12. 循环神经网络rnn与长短时记忆神经网络简述(07-2)
  13. 循环神经网络lstm代码实现(07-3)
  14. tensorflow模型保存和使用08
  15. 下载inception v3  google训练好的模型并解压08-3
  16. 使用inception v3做各种图像分类识别08-4
  17. word2vec模型训练简单案例
  18. word2vec+textcnn文本分类简述及代码

tensorflow版helloworld---拟合线性函数的k和b(02-4)的更多相关文章

  1. TensorFlow拟合线性函数

    TensorFlow拟合线性函数 简单的TensorFlow图构造 以单个神经元为例 x_data数据为20个随机 [0, 1) 的32位浮点数按照 shape=[20] 组成的张量 y_data为 ...

  2. 目标检测之车辆行人(tensorflow版yolov3)

    背景: 在自动驾驶中,基于摄像头的视觉感知,如同人的眼睛一样重要.而目前主流方案基本都采用深度学习方案(tensorflow等),而非传统图像处理(opencv等). 接下来我们就以YOLOV3为基本 ...

  3. TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点

    TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点 首先提醒一下,第7讲的最后滑动平均的代码已经更新了,代码要比理论重要 今天是过拟合,和正则化,本篇后面可能或更有兴趣, ...

  4. Tensorflow版Faster RCNN源码解析(TFFRCNN) (2)推断(测试)过程不使用RPN时代码运行流程

    本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第二篇   推断(测试)过程不使用RPN时代码运行流程 作者:Jiang Wu  原文见:https://hom ...

  5. tensorflow学习4-过拟合-over-fitting

    过拟合: 真实的应用中,并不是让模型尽量模拟训练数据的行为,而是希望训练数据对未知做出判断. 模型过于复杂后,模型会积极每一个噪声的部分,而不是学习数据中的通用 趋势.当一个模型的参数比训练数据还要多 ...

  6. 跟我学算法-tensorflow 实现线性拟合

    TensorFlow™ 是一个开放源代码软件库,用于进行高性能数值计算.借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU.GPU.TPU)和设备(桌面设备.服务器集群.移动设备.边缘设 ...

  7. Delphi_01_控制台版HelloWorld

    对于Windows下的控制台编程,我相信很多人都不陌生.而C语言开始的著名的“Hello world”程序基本是学习编程的第一步.我想对于 RAD开发,大家熟悉的一般都是GUI编程,而对于consol ...

  8. 初学tornado之MVC版helloworld

    作者:the5fire | 标签: MVC  tornado  | 发布:2012-08-06 2:41 p.m. 文接上篇,看我一个简单的helloworld,虽然觉得这个框架着实精小,但是实际开发 ...

  9. tensorflow版的bvlc模型

    研究相关的图片分类,偶然看到bvlc模型,但是没有tensorflow版本的,所以将caffe版本的改成了tensorflow的: 关于模型这个图: 下面贴出通用模板: from __future__ ...

随机推荐

  1. MySQL 整型

    MySQL中我们建表的时候,类型可以用bigint(20), 这是什么意思呢? 首先我们看bigint, MySQL的整型类型有这样几种: 类型      占用字节 tinyint        1 ...

  2. 使用Docker搭建Spark集群(用于实现网站流量实时分析模块)

    上一篇使用Docker搭建了Hadoop的完全分布式:使用Docker搭建Hadoop集群(伪分布式与完全分布式),本次记录搭建spark集群,使用两者同时来实现之前一直未完成的项目:网站日志流量分析 ...

  3. Centos6.10-FastDFS-Tracker.conf示例配置

    Centos610系列配置 FastDFS_Tracker.conf示例配置 # is this config file disabled # false for enabled # true for ...

  4. 包、logging模块、hashlib模块、openpyxl模块、深浅拷贝

    包.logging模块.hashlib模块.openpyxl模块.深浅拷贝 一.包 1.模块与包 模块的三种来源: 1.内置的 2.第三方的 3.自定义的 模块的四种表现形式: 1.py文件 2.共享 ...

  5. JavaScript 对象的深复制

    对象的深复制 源对象的属性更改,不会引起复制后的对象个属性的更改 源对象的任何属性与子属性与新对象的之间没有任何引用关系 Coding: /* 对象的深复制: 1 初始化目标对象 如果没有指定目标对象 ...

  6. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) - D2. Optimal Subsequences (Hard Version)(主席树)

    题意:一共有$n$个数,$m$次询问,每次询问包括$k.pos$两个数,需要你从这$n$个数里面找出$k$个数,使得他们的总和最大,如果有多种情况,找出序号字典序最小的一组,然后输出这个序列中第$po ...

  7. js 判断回文字符串

    回文字符串:字符串从前往后读和从后往前读字符顺序是一致的. 判断一个字符串是不是回文字符串 function isPalindrome(str) { var str1 = str.split(''). ...

  8. JavaScirpt - 模块的写法

    传送门 http://www.ruanyifeng.com/blog/2012/10/javascript_module.html 1. 原始写法 function f1() { // do sth. ...

  9. JDBC statement的常用方法

    Statement接口: 用于执行静态SQL语句并返回它所生成结果的对象. 三种Statement类: Statement: 由createStatement创建,用于发送简单的SQL语句(最好是不带 ...

  10. 手机远控SpyNote教程+软件

    链接:https://pan.baidu.com/s/1q0VVSxK0DCJk2VnOg5RgOA 提取码:1okp 生成一个小马界面.可以看到,和以往的远控一样,做好端口映射,定制图标,包名,版本 ...