1. unsqueeze()

该函数用来增加某个维度。在PyTorch中维度是从0开始的。

import torch

a = torch.arange(0, 9)
print(a)

结果:

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8])

利用view()改变tensor的形状。值得注意的是view不会修改自身的数据,返回的新tensor与源tensor共享内存;同时必须保证前后元素总数一致。

a = a.view(3, 3)
print(f"a:{a} \n shape:{a.shape}")

结果:

a:tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
shape:torch.Size([3, 3])

在第一个维度(即维度序号为0)前增加一个维度。

a = a.unsqueeze(0)
print(f"a:{a}\nshape:{a.shape}")

结果:

a:tensor([[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]])
shape:torch.Size([1, 3, 3])

同理,可在其他位置添加维度,在这里就不举例了。

2. squeeze()

该函数用来减少某个维度。

print(f"1.   a:{a}\nshape:{a.shape}")
a = a.unsqueeze(0)
a = a.unsqueeze(2)
print(f"2. a:{a}\nshape:{a.shape}")
a = a.squeeze(2)
print(f"3. a:{a}\nshape:{a.shape}")

结果:

1.   a:tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
shape:torch.Size([3, 3])
2. a:tensor([[[[0, 1, 2]], [[3, 4, 5]], [[6, 7, 8]]]])
shape:torch.Size([1, 3, 1, 3])
3. a:tensor([[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]])
shape:torch.Size([1, 3, 3])

3. 下面是运用上述两个函数,并进行一次卷积的例子。

from torchvision.transforms import  ToTensor
import torch as t
from torch import nnimport cv2
import numpy as np
import cv2
to_tensor = ToTensor()
# 加载图像
lena = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)
cv2.imshow('lena', lena)
# input = to_tensor(lena) 将ndarray转换为tensor,自动将[0,255]归一化至[0,1]。
input = to_tensor(lena).unsqueeze(0)
# 初始化卷积参数
kernel = t.ones(1, 1, 3, 3)/-9
kernel[:, :, 1, 1] = 1
conv = nn.Conv2d(1, 1, 3, 1, padding=1, bias=False)
conv.weight.data = kernel.view(1, 1, 3, 3)
# 输出
out = conv(input)
out = out.squeeze(0)
print(out.shape)
out = out.unsqueeze(3)
print(out.shape)
out = out.squeeze(0)
print(out.shape)
out = out.detach().numpy()
# 缩放到0~最大值
cv2.normalize(out, out, 1.0, 0, cv2.NORM_INF)
cv2.imshow("lena-result", out)
cv2.waitKey()

结果:

torch.Size([1, 304, 304])
torch.Size([1, 304, 304, 1])
torch.Size([304, 304, 1])
<class 'numpy.ndarray'> (304, 304, 1)

参考文献

[1] 陈云.深度学习框架之PyTorch入门与实践.北京:电子工业出版社,2018.

【深度学习】PyTorch之Squeeze()和Unsqueeze()的更多相关文章

  1. 【学习笔记】pytorch中squeeze()和unsqueeze()函数介绍

    squeeze用来减少维度, unsqueeze用来增加维度 具体可见下方博客. pytorch中squeeze和unsqueeze

  2. [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题

    [深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...

  3. [深度学习] Pytorch学习(一)—— torch tensor

    [深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...

  4. 深度学习PyTorch环境安装——mac

    参考:http://python.jobbole.com/87522/ 1.首先要安装Anaconda 1)什么是Anaconda Anaconda是Python的包管理器和环境管理器,是一个包含18 ...

  5. [深度学习] pytorch学习笔记(1)(数据类型、基础使用、自动求导、矩阵操作、维度变换、广播、拼接拆分、基本运算、范数、argmax、矩阵比较、where、gather)

    一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvisio ...

  6. [深度学习] pytorch学习笔记(2)(梯度、梯度下降、凸函数、鞍点、激活函数、Loss函数、交叉熵、Mnist分类实现、GPU)

    一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. ...

  7. pytorch中squeeze()和unsqueeze()函数介绍

    一.unsqueeze()函数 1. 首先初始化一个a 可以看出a的维度为(2,3) 2. 在第二维增加一个维度,使其维度变为(2,1,3) 可以看出a的维度已经变为(2,1,3)了,同样如果需要在倒 ...

  8. [深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法)

    Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% ...

  9. 深度学习--pytorch安装

    一.查看cuda及cudnn版本 先确保安装了显卡:nvidia-smi 查看 cat /usr/local/cuda/version.txt cat /usr/local/cuda/include/ ...

随机推荐

  1. USACO Training Section 1.1 Your Ride Is Here

    题目描述 众所周知,在每一个彗星后都有一只UFO.这些UFO时常来收集地球上的忠诚支持者.不幸的是,他们的飞碟每次出行都只能带上一组支持者.因此,他们要用一种聪明的方案让这些小组提前知道谁会被彗星带走 ...

  2. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  3. ST函数(ST表)RMQ O(1)查询 离线

    ST算法是基于倍增的动态规划算法. #include<iostream> #include<cstdio> #include<cstdlib> #include&l ...

  4. HBase Filter 过滤器之RowFilter详解

    前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考.RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase ...

  5. E - Help Jimmy POJ - 1661 dp

    E - Help Jimmy POJ - 1661 这个题目本身不是很难,但是可以更加优化这个写法. 开始是n*n #include <cstdio> #include <cstri ...

  6. WCF学习(二)

    WCF通道模型 绑定的本质是一个配置好的通道栈,为了方便程序员专著与业务逻辑,WCF提高了一系列常用绑定.随后会有相应的自定义通道栈代码 无论交互的另一方具体位置在哪里,WCF都会为消息的发送和接收建 ...

  7. NEON中的L可以避免溢出

    在做加法时,比如两个255x255的数值相加,那么正确结果将是130050,对一个最大值为65565的unsigned short是会溢出的,但是如果使用L命令时,则不会产生溢出.这说明L命令,不是先 ...

  8. 架构设计 | 分布式系统调度,Zookeeper集群化管理

    本文源码:GitHub·点这里 || GitEE·点这里 一.框架简介 1.基础简介 Zookeeper基于观察者模式设计的组件,主要应用于分布式系统架构中的,统一命名服务.统一配置管理.统一集群管理 ...

  9. C# 数据操作系列 - 2. ADO.NET操作

    0.前言 在上一篇中初略的介绍了一下SQL的基本写法,这一篇开始我们正式步入C#操作数据库的范围.通过这一系列的内容,我想大家能对于数据库交互有了一定的认识和基础.闲话不多说,先给大家介绍一个C#操作 ...

  10. 局域网ip地址扫描_v1版本

    局域网ip地址扫描 工作中,我们有时需要对局域网中ip地址使用情况进行统计.可以使用shell脚本进行扫. 脚本功能: 在线使用IP写入list_online.txt文件 未在线IP写入list_of ...