1. unsqueeze()

该函数用来增加某个维度。在PyTorch中维度是从0开始的。

import torch

a = torch.arange(0, 9)
print(a)

结果:

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8])

利用view()改变tensor的形状。值得注意的是view不会修改自身的数据,返回的新tensor与源tensor共享内存;同时必须保证前后元素总数一致。

a = a.view(3, 3)
print(f"a:{a} \n shape:{a.shape}")

结果:

a:tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
shape:torch.Size([3, 3])

在第一个维度(即维度序号为0)前增加一个维度。

a = a.unsqueeze(0)
print(f"a:{a}\nshape:{a.shape}")

结果:

a:tensor([[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]])
shape:torch.Size([1, 3, 3])

同理,可在其他位置添加维度,在这里就不举例了。

2. squeeze()

该函数用来减少某个维度。

print(f"1.   a:{a}\nshape:{a.shape}")
a = a.unsqueeze(0)
a = a.unsqueeze(2)
print(f"2. a:{a}\nshape:{a.shape}")
a = a.squeeze(2)
print(f"3. a:{a}\nshape:{a.shape}")

结果:

1.   a:tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
shape:torch.Size([3, 3])
2. a:tensor([[[[0, 1, 2]], [[3, 4, 5]], [[6, 7, 8]]]])
shape:torch.Size([1, 3, 1, 3])
3. a:tensor([[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]])
shape:torch.Size([1, 3, 3])

3. 下面是运用上述两个函数,并进行一次卷积的例子。

from torchvision.transforms import  ToTensor
import torch as t
from torch import nnimport cv2
import numpy as np
import cv2
to_tensor = ToTensor()
# 加载图像
lena = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)
cv2.imshow('lena', lena)
# input = to_tensor(lena) 将ndarray转换为tensor,自动将[0,255]归一化至[0,1]。
input = to_tensor(lena).unsqueeze(0)
# 初始化卷积参数
kernel = t.ones(1, 1, 3, 3)/-9
kernel[:, :, 1, 1] = 1
conv = nn.Conv2d(1, 1, 3, 1, padding=1, bias=False)
conv.weight.data = kernel.view(1, 1, 3, 3)
# 输出
out = conv(input)
out = out.squeeze(0)
print(out.shape)
out = out.unsqueeze(3)
print(out.shape)
out = out.squeeze(0)
print(out.shape)
out = out.detach().numpy()
# 缩放到0~最大值
cv2.normalize(out, out, 1.0, 0, cv2.NORM_INF)
cv2.imshow("lena-result", out)
cv2.waitKey()

结果:

torch.Size([1, 304, 304])
torch.Size([1, 304, 304, 1])
torch.Size([304, 304, 1])
<class 'numpy.ndarray'> (304, 304, 1)

参考文献

[1] 陈云.深度学习框架之PyTorch入门与实践.北京:电子工业出版社,2018.

【深度学习】PyTorch之Squeeze()和Unsqueeze()的更多相关文章

  1. 【学习笔记】pytorch中squeeze()和unsqueeze()函数介绍

    squeeze用来减少维度, unsqueeze用来增加维度 具体可见下方博客. pytorch中squeeze和unsqueeze

  2. [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题

    [深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...

  3. [深度学习] Pytorch学习(一)—— torch tensor

    [深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...

  4. 深度学习PyTorch环境安装——mac

    参考:http://python.jobbole.com/87522/ 1.首先要安装Anaconda 1)什么是Anaconda Anaconda是Python的包管理器和环境管理器,是一个包含18 ...

  5. [深度学习] pytorch学习笔记(1)(数据类型、基础使用、自动求导、矩阵操作、维度变换、广播、拼接拆分、基本运算、范数、argmax、矩阵比较、where、gather)

    一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvisio ...

  6. [深度学习] pytorch学习笔记(2)(梯度、梯度下降、凸函数、鞍点、激活函数、Loss函数、交叉熵、Mnist分类实现、GPU)

    一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. ...

  7. pytorch中squeeze()和unsqueeze()函数介绍

    一.unsqueeze()函数 1. 首先初始化一个a 可以看出a的维度为(2,3) 2. 在第二维增加一个维度,使其维度变为(2,1,3) 可以看出a的维度已经变为(2,1,3)了,同样如果需要在倒 ...

  8. [深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法)

    Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% ...

  9. 深度学习--pytorch安装

    一.查看cuda及cudnn版本 先确保安装了显卡:nvidia-smi 查看 cat /usr/local/cuda/version.txt cat /usr/local/cuda/include/ ...

随机推荐

  1. python(安装)

    1.下载安装包 https://www.python.org/downloads/ 2.安装 默认安装路径:C:\python3(建议自定义安装路径) 3.配置环境变量 [右键计算机]-->[属 ...

  2. Fiddler 弱网测试

    1.设置上传下载速率 在Fiddler Script选项中查找uploaded,找到设置网络上传和下载设置值 分析一下这几行代码: 首先来判断 m_SimulateModem 是否为 true,也就是 ...

  3. HTML 页面跳转的五种方法

    H方法TML 页面跳转的五种方法 下面列了五个例子来详细说明,这几个例子的主要功能是:在5秒后,自动跳转到同目录下的hello.html(根据自己需要自行修改)文件.1) html的实现 <he ...

  4. 003_python的str切片,str常用操作方法,for循环,集合,深浅copy

    基础数据类型 基础数据类型,有7种类型,存在即合理. 1.int 整数 主要是做运算的 .比如加减乘除,幂,取余  + - * / ** %... 2.bool布尔值 判断真假以及作为条件变量 3.s ...

  5. 今天主要做的是Remember Me(记住我)功能的实现

    功能就是让网站登录过的人只要不注销,下次打开网站之后直接进入,不用重复登录,此功能主要是session与cookie的配合运用,具体实现是这样的,在登录页面判断并完成登录,然后将所需数据写入sessi ...

  6. 爬虫系列 一次采集.NET WebForm网站的坎坷历程

    今天接到一个活,需要统计人员的工号信息,由于种种原因不能直接连数据库 [无奈].[无奈].[无奈].采取迂回方案,写个工具自动登录网站,采集用户信息. 这也不是第一次采集ASP.NET网站,以前采集的 ...

  7. 设计模式之GOF23观察者模式

    观察者模式Observer 广播机制 场景:多个观察者--被通知改变 CS的时候,人物移动坐标变化,更新每个人地图上的坐标 核心:当目标对象(Subject)的状态值改变时,需要及时告知所有观察者(O ...

  8. 05JAVA基础方法

    一.格式 函数有返回值 public static 返回类型 方法名(参数类型 形参1,参数类型 形参2){ 函数体; return 返回值;//返回值必须是定义的返回类型 } 函数没有有返回值 pu ...

  9. Windows10系统优化(批处理)

    经历过XP.Win7.Vista.Win8之后,Win10有了很大的改变,虽然Win10刚出时,非常糟糕,甚至很长一段时间被认为没有Win7,但是随着Win10的不断优化不断更新,已经慢慢的变得更好了 ...

  10. java ->会话技术Cookie&Session

    会话技术Cookie&Session 会话技术简介 存储客户端的状态 由一个问题引出今天的内容,例如网站的购物系统,用户将购买的商品信息存储到哪里?因为Http协议是无状态的,也就是说每个客户 ...