Hive 集成 Hudi 实践(含代码)| 可能是全网最详细的数据湖系列
公众号后台越来越多人问关于数据湖相关的内容,看来大家对新技术还是很感兴趣的。关于数据湖的资料网络上还是比较少的,特别是实践系列,对于新技术来说,基础的入门文档还是很有必要的,所以这一篇希望能够帮助到想使用Hudi的同学入门。
本篇的Hudi使用的是孵化版本 0.5.2;其他依赖 Spark-2.4.4,Hive-1.1.0
Hudi 服务器环境准备
wget https://github.com/apache/hudi/archive/release-0.5.2-incubating.tar.gz
tar zxvf release-0.5.2-incubating.tar.gz
cd release-0.5.2-incubating
mvn clean package -DskipTests -DskipITs
cp ./hudi-hadoop-mr/target/hudi-hadoop-mr-0.5.2-incubating.jar $HIVE_HOME/lib/
拷贝依赖包到 Hive 路径是为了 Hive 能够正常读到 Hudi 的数据,至此服务器环境准备完毕。
用 Spark 写一段数据
一切准备完毕先写一段数据到 Hudi 里,首先数据源 ods.ods_user_event 的表结构为:
CREATE TABLE ods.ods_user_event(
uuid STRING,
name STRING,
addr STRING,
update_time STRING,
date STRING)
stored as parquet;
然后是 Maven 的依赖,详细代码关注公众号【老蒙大数据】回复 hudi 后即可获取。
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-spark_2.11</artifactId>
<version>0.5.2-incubating</version>
</dependency>
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-common</artifactId>
<version>0.5.2-incubating</version>
</dependency>
代码逻辑:
- 初始化 SparkSession,配置相关配置项
- 构建 DataFrame,大家可以自由发挥,这里的案例是从Hive读数据构建。
- DataFrame写入Hudi,这一块说到底就是把数据写入 HDFS 路径下,但是需要一堆配置,这些配置就体现了 Hudi 的特性:
- DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY:指定唯一id的列名
- DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY:指定更新时间,该字段数值大的数据会覆盖小的
- DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY:指定分区列,和Hive的分区概念类似
- HoodieIndexConfig.BLOOM_INDEX_UPDATE_PARTITION_PATH:设置当分区变更时,当前数据的分区目录是否变更
- HoodieIndexConfig.INDEX_TYPE_PROP:设置索引类型目前有 HBASE,INMEMORY,BLOOM,GLOBAL_BLOOM 四种索引
上述例子中,选择了 HoodieGlobalBloomIndex(全局索引),会在所有分区内查找指定的 recordKey。而 HoodieBloomIndex 只在指定的分区内查找。
def main(args: Array[String]): Unit = {
val sss = SparkSession.builder.appName("hudi")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("hive.metastore.uris", "thrift://ip:port")
.enableHiveSupport().getOrCreate()
val sql = "select * from ods.ods_user_event"
val df: DataFrame = sss.sql(sql)
df.write.format("org.apache.hudi")
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "recordKey")
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "update_time")
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "date")
.option(HoodieIndexConfig.BLOOM_INDEX_UPDATE_PARTITION_PATH, "true")
.option(HoodieIndexConfig.INDEX_TYPE_PROP, HoodieIndex.IndexType.GLOBAL_BLOOM.name())
.option("hoodie.insert.shuffle.parallelism", "10")
.option("hoodie.upsert.shuffle.parallelism", "10")
.option(HoodieWriteConfig.TABLE_NAME, "ods.ods_user_event_hudi")
.mode(SaveMode.Append)
.save("/user/hudi/lake/ods.db/ods_user_event_hudi")
}
执行成功后会有如下结果,因为我们是按照date分区,每一天的数据会生成一个文件夹和Hive类似。
[hadoop@hadoop31 ~]# hdfs dfs -ls /user/hudi/lake/ods.db/ods_user_event_hudi/
Found 4 items
drwxr-xr-x - hadoop hadoop 0 2020-05-25 18:42 /user/hudi/lake/ods.db/ods_user_event_hudi/20200501
drwxr-xr-x - hadoop hadoop 0 2020-05-25 18:42 /user/hudi/lake/ods.db/ods_user_event_hudi/20200502
drwxr-xr-x - hadoop hadoop 0 2020-05-25 18:42 /user/hudi/lake/ods.db/ods_user_event_hudi/20200503
drwxr-xr-x - hadoop hadoop 0 2020-05-25 18:42 /user/hudi/lake/ods.db/ods_user_event_hudi/20200504
另外,注意 recordKey 必须唯一,不然数据会被覆盖,且值不能为 null,否则会有以下报错。
Caused by: org.apache.hudi.exception.HoodieKeyException: recordKey value: "null" for field: "user_uid" cannot be null or empty.
Hive 创建外部表读数据
上一步中 Spark 将数据写到了 hudi,想要通过Hive访问到这块数据,就需要创建一个Hive外部表了,因为 Hudi 配置了分区,所以为了能读到所有的数据,咱们的外部表也得分区,分区字段名可随意配置。
CREATE TABLE ods.ods_user_event_hudi(
uuid STRING,
name STRING,
addr STRING,
update_time STRING,
date STRING)
PARTITIONED BY (
`dt` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'/user/hudi/lake/ods.db/ods_user_event_hudi'
至此,直接读数据肯定是空的,因为我们创建的是个分区表,所以还需要指定分区
alter table ods.ods_user_event_hudi add if not exists partition(dt='20200504') location '/user/hudi/lake/ods.db/ods_user_event_hudi/20200504'
那么这个时候问题来了,一年有365个分区,要一个一个建立手动创建分区吗?
抱歉我也没发现更好的办法,只能送你个简单的脚本了。
#!/bin/bash
start_date=20190101
end_date=20200520
start=`date -d "$start_date" "+%s"`
end=`date -d "$end_date" "+%s"`
for((i=start;i<=end;i+=86400)); do
dt=$(date -d "@$i" "+%Y%m%d")
hive -e "alter table ods.ods_user_event_hudi add if not exists partition(dt='${dt}') location '/user/hudi/lake/ods.db/ods_user_event_hudi/${dt}';
"
done
后记
最后,执行 select * from ods.ods_user_event_hudi 要是没有数据你来找我。另外值得注意的是,如果此时直接用 Hive 将数据 insert into ods.ods_user_event_hudi,虽然数据会写入到 hudi 的目录下,但是相同的 recordKey 是不会覆盖原有数据的。
下一篇详细写 Spark 操作 Hudi 的相关内容,敬请期待。本篇详细代码关注公众号【老蒙大数据】回复 hudi 后即可获取。
推荐阅读
3000字长文教你大数据该怎么学!
选方向?大数据的职位你了解多少
Hive 集成 Hudi 实践(含代码)| 可能是全网最详细的数据湖系列的更多相关文章
- Hive集成HBase实践
#step1: create hive table 't_test' hive -e "create table test.t_user(id int,name string,age int ...
- Robinhood基于Apache Hudi的下一代数据湖实践
1. 摘要 Robinhood 的使命是使所有人的金融民主化. Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础. 我们有各种数据源--OLTP 数据库.事件流和各种第 ...
- 如何使用Hive集成Solr?
(一)Hive+Solr简介 Hive作为Hadoop生态系统里面离线的数据仓库,可以非常方便的使用SQL的方式来离线分析海量的历史数据,并根据分析的结果,来干一些其他的事情,如报表统计查询等. So ...
- Apache Hudi:云数据湖解决方案
1. 引入 开源Apache Hudi项目为Uber等大型组织提供流处理能力,每天可处理数据湖上的数十亿条记录. 随着世界各地的组织采用该技术,Apache开源数据湖项目已经日渐成熟. Apache ...
- 大数据学习系列之九---- Hive整合Spark和HBase以及相关测试
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为h ...
- Apache Hudi 与 Hive 集成手册
1. Hudi表对应的Hive外部表介绍 Hudi源表对应一份HDFS数据,可以通过Spark,Flink 组件或者Hudi客户端将Hudi表的数据映射为Hive外部表,基于该外部表, Hive可以方 ...
- 科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码)
科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码) 春有百花秋有月,夏有凉风冬有雪: 若无闲事挂心头,便是人间好时节. --宋.无门慧开 不废话了,以下训练模型数据 ...
- 生态 | Apache Hudi集成Alluxio实践
原文链接:https://mp.weixin.qq.com/s/sT2-KK23tvPY2oziEH11Kw 1. 什么是Alluxio Alluxio为数据驱动型应用和存储系统构建了桥梁, 将数据从 ...
- 大数据技术之_11_HBase学习_02_HBase API 操作 + HBase 与 Hive 集成 + HBase 优化
第6章 HBase API 操作6.1 环境准备6.2 HBase API6.2.1 判断表是否存在6.2.2 抽取获取 Configuration.Connection.Admin 对象的方法以及关 ...
随机推荐
- double运算的坑
某个结果运算后,得出的数据:a = 15.599999999 而不是15.6,导致条件判断 a < 15.6 为true,使程序出现bug 解决办法,对运算后的浮点数,进行格式化(以保留一位小数 ...
- badboy 录制脚本
第一步:介绍badboy工具 1.1: 页面功能分析: 1. 界面视图,模拟浏览器,能够进行操作 2. 需要录制脚本的URL 3. 点击运行URL 4. Summary:运行的各指标,响应时间,成功事 ...
- Android 开发技术周报 Issue#278
新闻 Pixel 4a渲染图曝光:或能成新款iPhone SE有力竞争者 Google Play商店为预注册的游戏和应用提供自动安装功能 Android最强单摄Pixel 4a样张曝光:1200万像素 ...
- java基础篇 之 super关键字的理解
之前一直认为,super指向的是父类对象.到今天,仔细查询了资料,自己做了实验,确认这个结论是不对的.我们分一下几个点讨论下: super的作用: 第一种:用来访问父类被隐藏的成员变量 第二种:用 ...
- spring学习笔记(三)我对AOP理解
首先我们要知道AOP是什么?AOP全称Aspect OrientedProgramming,即面向切面编程.在这里我不想去说什么是切面,什么是切点,什么是通知等等,相关博客很多,如果大家想知道可以自己 ...
- vue-双向响应数据底层原理分析
总所周知,vue的一个大特色就是实现了双向数据响应,数据改变,视图中引用该数据的部分也会自动更新 一.双向数据绑定基本思路 “数据改变,视图中引用该数据的部分也会自动更新“,从这句话,我们可以分析出以 ...
- 推荐算法_CIKM-2019-AnalytiCup 冠军源码解读_2
最近在为机器学习结合推荐算法的优化方法和数据来源想办法.抱着学习的态度继续解读19-AnalytiCup的冠军源码. 第一部分itemcf解读的连接:https://www.cnblogs.com/m ...
- python100例 11-20
011 兔子问题 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? f1=1 f2=1 for i ...
- jbpm4 泳道
今天刚学习了jbpm4的泳道使用,方便以后查阅记录一下! 泳道定义: <swimlane name="myswim" assignee="userC"&g ...
- JPA 分页处理
1.要实现jpa分页管理首先得要正确配置jpa环境,在spring环境中的配置如下: 开启注解功能 <bean class="org.springframework.orm.jpa.s ...