字体颜色如何

字体颜色

SPOJ - REPEATS

题意

给出一个字符串,求重复次数最多的连续重复子串。

题解

引自论文-后缀数组——处理字符串的有力工具

解释参考博客

“S肯定包括了字符r[0], r[L], r[L * 2],r[L * 3], ……中的某相邻的两个”

由于当前S是有两个长度为L的连续重复子串拼接而成的,那意味着S[i]和S[i+L] ( 0≤i<L )必定是一样的字符

而这两个字符位置相差L

而字符r[0],r[L],r[L * 2],r[L * 3],......中相邻两个的位置差均为L

所以只须看字符r[L* i]和r[L* (i+1)]往前和

往后各能匹配到多远,记这个总长度为K,那么这里连续出现了K/L+1次。

这句就是枚举\(r[l * i]\),\(r[l * (i+1)]\),分别作为重复子串第一二个重复的串中的字符时,重复子串的重复次数可以是多少。

结合上面图中的数组更容易理解.

如果此时r[i * L]是第一个重复子串的首字符,这样直接用公共前缀[lcp(i * L ,L* (i+1))]k除以L并向下取整+1就可以得到最后结果。但如果r[i * L]如果不是首字符,这样算完之后结果就有可能偏小,因为r[i * L]前面可能还有少许字符也能看作是第一个重复子串里的。

于是,我们不妨先算一下,从r[i * L]开始,除匹配了k/L个重复子串,还剩余了几个字符,剩余的自然是k%L个字符。如果说r[i * L]的前面还有L-k%L个字符完成匹配的话,这样就相当于利用多余的字符还可以再匹配出一个重复子串,于是我们只要检查一下从r[i * L-(L-k%L)]和r[L * (i+1)-(L-k%L)]开始是否有L-k%L个字符能够完成匹配即可,也就是说去检查这两个后缀的最长公共前缀是否比L-k%L大即可。

当然如果公共前缀不比L-k%L小,自然就不比L小,因为后面的字符都是已经匹配上的,所以为了方便编写,程序里面就直接去看是否会比L小就可以了。

代码

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#define pb push_back
#define bitnum(a) __builtin_popcount(a)
//返回a中有多少个1,注意是32为无符号整数
typedef long long ll;
using namespace std;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
const int N = 1e6+10; int sa[N],cnt[N],pos[N],rk[N],oldrk[N],ht[N],n,m;
char str[N],s[2];
bool cmp(int a,int b,int k)
{
return oldrk[a]==oldrk[b]&&oldrk[a+k]==oldrk[b+k];
}
void getsa()
{
memset(cnt,0,sizeof(cnt));
m=122;
for(int i=1;i<=n;i++) ++cnt[rk[i]=str[i]];
for(int i=1;i<=m;i++) cnt[i]+=cnt[i-1];
for(int i=n;i;i--) sa[cnt[rk[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int num=0;
for(int i=n-k+1;i<=n;i++) pos[++num]=i;
for(int i=1;i<=n;i++) if(sa[i]>k) pos[++num]=sa[i]-k;
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=n;i++) ++cnt[rk[i]];
for(int i=1;i<=m;i++) cnt[i]+=cnt[i-1];
for(int i=n;i;i--) sa[cnt[rk[pos[i]]]--]=pos[i];
num=0;
memcpy(oldrk,rk,sizeof(rk));
for(int i=1;i<=n;i++) rk[sa[i]]=cmp(sa[i],sa[i-1],k)?num:++num;
if(num==n) break;
m=num;
}
for(int i=1;i<=n;i++) rk[sa[i]]=i;
int k=0;
for(int i=1;i<=n;i++)
{
if(k) --k;
while(str[i+k]==str[sa[rk[i]-1]+k]) ++k;
ht[rk[i]]=k;
}
}
int dp[N][20];
void RMQ()
{
for(int i=1;i<=n;i++) dp[i][0]=ht[i];
for(int j=1;(1<<j)<=n;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
}
int query(int l,int r)
{
int k=0;
while((1<<(k+1))<=(r-l+1)) ++k;
return min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int lcp(int i,int j)
{
i=rk[i],j=rk[j];
if(i>j) swap(i,j);
return query(i+1,j);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%s",s);
str[i]=s[0];
}
getsa();
RMQ();
int ans=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j+i<=n;j+=i)
{
int now=lcp(j,j+i);
int num=now/i+1;
int k=j-(i-now%i);
if(k>0&&lcp(k,k+i)>=i) num++;
ans=max(ans,num);
}
}
printf("%d\n",ans);
}
return 0;
}

【SPOJ – REPEATS】 后缀数组【连续重复子串】的更多相关文章

  1. 【Poj-3693】Maximum repetition substring 后缀数组 连续重复子串

    POJ - 3693 题意 SPOJ - REPEATS的进阶版,在这题的基础上输出字典序最小的重复字串. 思路 跟上题一样,先求出最长的重复次数,在求的过程中顺便纪录最多次数可能的长度. 因为sa数 ...

  2. SPOJ - REPEATS —— 后缀数组 重复次数最多的连续重复子串

    题目链接:https://vjudge.net/problem/SPOJ-REPEATS REPEATS - Repeats no tags  A string s is called an (k,l ...

  3. SPOJ REPEATS 后缀数组

    题目链接:http://www.spoj.com/problems/REPEATS/en/ 题意:首先定义了一个字符串的重复度.即一个字符串由一个子串重复k次构成.那么最大的k即是该字符串的重复度.现 ...

  4. [spoj DISUBSTR]后缀数组统计不同子串个数

    题目链接:https://vjudge.net/contest/70655#problem/C 后缀数组的又一神奇应用.不同子串的个数,实际上就是所有后缀的不同前缀的个数. 考虑所有的后缀按照rank ...

  5. POJ - 2406 ~SPOJ - REPEATS~POJ - 3693 后缀数组求解重复字串问题

    POJ - 2406 题意: 给出一个字符串,要把它写成(x)n的形式,问n的最大值. 这题是求整个串的重复次数,不是重复最多次数的字串 这题很容易想到用KMP求最小循环节就没了,但是后缀数组也能写 ...

  6. SPOJ REPEATS Repeats (后缀数组 + RMQ:子串的最大循环节)题解

    题意: 给定一个串\(s\),\(s\)必有一个最大循环节的连续子串\(ss\),问最大循环次数是多少 思路: 我们可以知道,如果一个长度为\(L\)的子串连续出现了两次及以上,那么必然会存在\(s[ ...

  7. POJ-3693-Maximum repetition substring(后缀数组-重复次数最多的连续重复子串)

    题意: 给出一个串,求重复次数最多的连续重复子串 分析: 比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现几次. 既然长度为L的串重复出现,那么str[0],str[l],str ...

  8. poj 3693 后缀数组 重复次数最多的连续重复子串

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8669   Acc ...

  9. POJ3693 Maximum repetition substring —— 后缀数组 重复次数最多的连续重复子串

    题目链接:https://vjudge.net/problem/POJ-3693 Maximum repetition substring Time Limit: 1000MS   Memory Li ...

随机推荐

  1. 痞子衡嵌入式:简析i.MXRT1170 Cortex-M4 L-MEM ECC功能特点、开启步骤、性能影响

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是恩智浦i.MXRT1170上Cortex-M4内核的L-MEM ECC功能. 本篇是 <简析i.MXRT1170 Cortex-M ...

  2. 硬盘性能测试工具之bonnie++

    bonnie++ 官方站点 先写内存的两倍,内存较大时比较耗时.适合简单的测试场景. # bonnie++ -u root 写测试 读测试 Version 1.97 ------Sequential ...

  3. 浏览器插件之王-Tampermonkey(油猴脚本)

    大家电脑都在使用浏览器,相信大家对浏览器插件也不陌生,浏览器插件是安装在浏览器里面,对浏览器功能进行拓展的脚本,现在的主流浏览器都有各种各样的插件如图: 这些插件让我们的上网方便了许多,有去广告的插件 ...

  4. pytorch 中模型的保存与加载,增量训练

     让模型接着上次保存好的模型训练,模型加载 #实例化模型.优化器.损失函数 model = MnistModel().to(config.device) optimizer = optim.Adam( ...

  5. VUE前端项目配置代理解决跨域问题

    VUE前端项目配置代理解决跨域问题 问题如下,经常在本地调试接口出现这种问题 解决方式1:Chrome 的扩展插件 以前使用Chrome 的扩展插件,但是有时候还是会出现莫名其妙的问题. 需要梯子才行 ...

  6. ApiPost如何在预执行脚本里添加请求参数?

    ApiPost V3引入了预执行脚本和后执行脚本的概念,详细可以通过链接:<ApiPost的预执行脚本和后执行脚本>了解学习更多.本文主要介绍如何在预执行脚本里增加请求参数. 使用场景 我 ...

  7. Java第一阶段作业总结

    目录 0.前言 1.作业过程总结 2.OO设计心得 3.测试的理解与实践 4.课程收获 5.对课程的建议 前言 本次博客针对第一阶段的三次作业发表总结,作业要求主要是初学者对于Java的基本语法.用法 ...

  8. Python 3之bytes新特性

    转载: Python 3最重要的新特性大概要算是对文本和二进制数据作了更为清晰的区分. 文本总是Unicode,由str类型表示,二进制数据则由bytes类型表示. Python 3不会以任意隐式的方 ...

  9. Bubble Cup 11 - Finals [Online Mirror, Div. 1]题解 【待补】

    Bubble Cup 11 - Finals [Online Mirror, Div. 1] 一场很好玩的题啊! I. Palindrome Pairs 枚举哪种字符出现奇数次. G. AI robo ...

  10. MySQL使用ProxySQL实现读写分离

    1 ProxySQL简介: ProxySQL是一个高性能的MySQL中间件,拥有强大的规则引擎.官方文档:https://github.com/sysown/proxysql/wiki/下载地址:ht ...