吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率


,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有
30%的值是缺失的。下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归
和随机梯度上升算法来预测病马的生死。
准备数据:处理被据中的缺失值
因为有时候数据相当昂贵,扔掉和重新获取
都是不可取的,所以必须采用一些方法来解决这个问题。
下面给出了一些可选的做法:

这里选择实数0来替换所有缺失值,恰好能适用于Logistic回归。这样做的直觉在
于 ,我们需要的是一个在更新时不会影响系数的值。回归系数的更新公式如下:

使 用 Logistic
回归方法进行分类并不需要做很多工作,所需做的只是把测试集上每个特征向量乘以最优化方法
得来的回归系数,再将该乘积结果求和,最后输人到sigmoid 函数中即可0 如果对应的sigmoid值
大于0.5就预测类别标签为1,否则为0。

def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5:
return 1.0
else:
return 0.0 def colicTest():
frTrain = open('F:\\machinelearninginaction\\Ch05\\horseColicTraining.txt')
frTest = open('F:\\machinelearninginaction\\Ch05\\horseColicTest.txt')
trainingSet = []
trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print("the error rate of this test is: %f" % errorRate)
return errorRate
def multiTest():
numTests = 10; errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))) multiTest()

小结:

吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率的更多相关文章
- 吴裕雄--天生自然python机器学习:Logistic回归
假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...
- 吴裕雄--天生自然python机器学习:机器学习简介
除却一些无关紧要的情况,人们很难直接从原始数据本身获得所需信息.例如 ,对于垃圾邮 件的检测,侦测一个单词是否存在并没有太大的作用,然而当某几个特定单词同时出现时,再辅 以考察邮件长度及其他因素,人们 ...
- 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...
- 吴裕雄--天生自然python机器学习:朴素贝叶斯算法
分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...
- 吴裕雄--天生自然python机器学习:决策树算法
我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可 ...
- 吴裕雄--天生自然python机器学习:支持向量机SVM
基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...
- 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果
在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...
- 吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别
from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i ...
- 吴裕雄--天生自然python机器学习:使用朴素贝叶斯过滤垃圾邮件
使用朴素贝叶斯解决一些现实生活中 的问题时,需要先从文本内容得到字符串列表,然后生成词向量. 准备数据:切分文本 测试算法:使用朴素贝叶斯进行交叉验证 文件解析及完整的垃圾邮件测试函数 def cre ...
随机推荐
- POJ 2676:Sudoku 数独
Sudoku Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15830 Accepted: 7737 Special ...
- 线程与进程 concurrent.futures模块
https://docs.python.org/3/library/concurrent.futures.html 17.4.1 Executor Objects class concurrent.f ...
- 读书笔记 - js高级程序设计 - 第四章 变量 作用域 和 内存问题
5种基本数据类型 可以直接对值操作 判断引用类型 var result = instanceof Array 执行环境 每个执行环境都有一个与之关联的变量对象,环境中定义的所有变量和函数都保存在这 ...
- 求1+2+3+…..+n
[问题]求1+2+3+…+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). [思路]由于题目好多运算符不能用,我们只有想到使用递 ...
- CSS行间样式与内部样式
注释 <!-- --> 快捷键 crtl+/ div 双标签<div></div> CSS语法 属性名:属性值: Css引入方式 1.行间样式的引入:在标签中 ...
- Python自学之路---Day13
目录 Python自学之路---Day13 常用的三个方法 匹配单个字符 边界匹配 数量匹配 逻辑与分组 编译正则表达式 其他方法 Python自学之路---Day13 常用的三个方法 1.re.ma ...
- 最短路———Floyd算法
C - 六度分离 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- java实现接口导出csv文件
Tomxin7 Simple, Interesting | 简单,有趣 业务介绍 项目要求从数据库中查询出相关数据后,通过表格展示给用户,如果用户需要,可以点击导出按钮,导出数据为csv格式. 开发环 ...
- 更改php.ini配置
vi /etc/php.ini #编辑修改 @ini_set('memory_limit', '64M'); / ...
- linux文件软链接与硬链接
1.命令格式: ln [参数][源文件或目录][目标文件或目录] 软链接只会在你选定的位置上生成一个文件的镜像,不会占用磁盘空间. 2.命令功能: Linux文件系统中,有所谓的链接(link),我们 ...