,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有
30%的值是缺失的。下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归
和随机梯度上升算法来预测病马的生死。

准备数据:处理被据中的缺失值

因为有时候数据相当昂贵,扔掉和重新获取
都是不可取的,所以必须采用一些方法来解决这个问题。

下面给出了一些可选的做法:

这里选择实数0来替换所有缺失值,恰好能适用于Logistic回归。这样做的直觉在
于 ,我们需要的是一个在更新时不会影响系数的值。回归系数的更新公式如下:

使 用 Logistic
回归方法进行分类并不需要做很多工作,所需做的只是把测试集上每个特征向量乘以最优化方法
得来的回归系数,再将该乘积结果求和,最后输人到sigmoid 函数中即可0 如果对应的sigmoid值
大于0.5就预测类别标签为1,否则为0。

def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5:
return 1.0
else:
return 0.0 def colicTest():
frTrain = open('F:\\machinelearninginaction\\Ch05\\horseColicTraining.txt')
frTest = open('F:\\machinelearninginaction\\Ch05\\horseColicTest.txt')
trainingSet = []
trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print("the error rate of this test is: %f" % errorRate)
return errorRate
def multiTest():
numTests = 10; errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))) multiTest()

小结:

吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率的更多相关文章

  1. 吴裕雄--天生自然python机器学习:Logistic回归

    假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...

  2. 吴裕雄--天生自然python机器学习:机器学习简介

    除却一些无关紧要的情况,人们很难直接从原始数据本身获得所需信息.例如 ,对于垃圾邮 件的检测,侦测一个单词是否存在并没有太大的作用,然而当某几个特定单词同时出现时,再辅 以考察邮件长度及其他因素,人们 ...

  3. 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验

    实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...

  4. 吴裕雄--天生自然python机器学习:朴素贝叶斯算法

    分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...

  5. 吴裕雄--天生自然python机器学习:决策树算法

    我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可 ...

  6. 吴裕雄--天生自然python机器学习:支持向量机SVM

    基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...

  7. 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

    在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...

  8. 吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别

    from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i ...

  9. 吴裕雄--天生自然python机器学习:使用朴素贝叶斯过滤垃圾邮件

    使用朴素贝叶斯解决一些现实生活中 的问题时,需要先从文本内容得到字符串列表,然后生成词向量. 准备数据:切分文本 测试算法:使用朴素贝叶斯进行交叉验证 文件解析及完整的垃圾邮件测试函数 def cre ...

随机推荐

  1. [ACTF2020 新生赛]Include

    0x00 知识点 本地文件包含 ?file=php://filter/read/convert.base64-encode/resource=index.php ?file=php://filter/ ...

  2. ComboPooledDataSource连接mysql

      Dbutils学习(介绍和入门)   一:Dbutils是什么?(当我们很难理解一个东西的官方解释的时候,就让我们记住它的作用)      Dbutils:主要是封装了JDBC的代码,简化dao层 ...

  3. DevOps云翼日志服务实践

    10月30日,全球权威数据调研机构IDC正式发布<IDCMarketScape:中国DevOps云市场2019,厂商评估>报告.京东云凭借丰富的场景和实践能力,以及高质量的服务交付和平台稳 ...

  4. 吴裕雄--天生自然 JAVASCRIPT开发学习:计时事件

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. 因子分析和PCA总结

    因子分析和PCA 定义 因子分析就是数据降维工具.从一组相关变量中删除冗余或重复,把相关的变量放在一个因子中,实在不相关的因子有可能被删掉.用一组较小的“派生”变量表示相关变量,这个派生就是新的因子. ...

  6. Spring DATA Neo4J(一)

    Spring DATA Neo4J——简介 Spring Framework提供了一下模块来处理基于Java的应用程序的DAO层 Spring JDBC Spring ORM Spring DATA ...

  7. i春秋2020新春公益赛WP

    Re Factory 主函数fork了一个子进程,父进程添加了一个信号处理器用于比对input,然后死循环挂起.子进程读入input,然后调用了关键函数. 跟进关键函数,发现是从一段内存中读取数据,然 ...

  8. Vue2.0权限树组件

    项目使用的饿了么的Element-Ui,权限树使用其树形控件: <el-tree :data="data" ></el-tree> 刚开始没有特殊需求,三级 ...

  9. 移除手机端a标签点击自动出现的边框和背景

    手机端a标签会自动补充出现边框或者背景,使得用户知道a标签的点击状态,但样式很不好看 <!DOCTYPE html> <html> <head> <meta ...

  10. PAT Basic 反转链表 (25) [链表]

    题目 给定⼀个常数K以及⼀个单链表L,请编写程序将L中每K个结点反转.例如:给定L为1→2→3→4→5→6,K为3,则输出应该为3→2→1→6→5→4:如果K为4,则输出应该为4→3→2→1→5→6, ...