Google在KDD2013上关于CTR的一篇论文
最近在做CTR,刚好Google在KDD发了一篇文章,讲了他们的一些尝试,总结一下:
先是一些公式的符号说明:
一、优化算法
CTR中经常用Logistic regression进行训练,一个常用的Loss Function为
Online gradient descent(OGD)是一个常用的优化方法,但是在加上L1正则化后,这种方法不能产生有效的稀疏模型。相比之下 Regularized Dual Averaging (RDA)拥有更好的稀疏性,但是精度不如OGD好。
FTRL-Proximal 方法可以同时得到稀疏性与精确性,不同于OGD的迭代步骤:
其中$\eta_t$是一个非增的学习率
FTRL-Proximal通过下式迭代:
其中参数 $\sigma_s$ 是学习率,一般我们有 $\sum_{s=1}^t\sigma_s=\frac{1}{\eta_t}$ 。
更新公式:
算法如下:
这里多个一个 $\lambda_2$ 是一个L2正则化参数。
二、学习率
$\displaystyle \eta_t=\frac{1}{\sqrt{t}}$
由于在求解时,这样,对每一个坐标我们都使用了同样的参数,这样一些没有使用的坐标的参数也会下降,显然这不太合理。
一个近似最优的选择是:
g是梯度向量
三、存储空间
1.特征选择
在CTR中,跟多特征仅仅出现了一次(In fact, in some of our models, half the unique features occur only once in the entire training set of billions of examples),这样特征几乎没有什么用,但是存储起来非常浪费空间。L1正则化虽然解决了一些问题,但是这样降低了一些精度,因此另一个选择是
probabilistic feature inclusion,这种方法中,一个特征第一次出现时,会以一定的概率被保存使用。关于这个概率Google尝试了两种方法:
Poisson Inclusion:以概率p增加特征,这样一般特征被加入就需要出现1/p次
Bloom Filter Inclusion:用一系列的Bloom flters来检测特征的前n次出现,一旦检测到出现了n次(因为BF有冲突,所以实际可能少于n),就加入模型并用在后面的训练中。
2.系数编码
因为大部分系数都在-2和2之间,因此使用了定点的q2.13编码,同时也保证了小数的一些精度。编码包括一位的符号,2位的整数和13位的小数。
因此误差可能在OGD算法中发散,因此使用了一个简单的随机取整策略:
R是一个0到1的随机整数。
3.多个相似模型的训练
在测试一些超参数的影响时,同时训练多个模型非常有用。观察发现,有些数据可以被多个模型共用,但是另外一些(如系数)不能,如果把模型的系数存在一个HASH表里,就可以让多个变体同时使用这些参数,比如学习率。
4.单值结构
有时我们想训练一些模型,他们之间只是删除或增加了一些特征。单值特征为每一个特征存了一个权重,权重被所有有该特征的模型共享,学习方法如下:
在OGD更新中,每个模型用他自己的的那部分特征计算一个Loss, 然后对每一个特征,每一个模型计算一个新的系数,最后把所有值平均后存为单值。该单值下一步被所有模型使用。
5.计数与梯度
假设所有事件包括统一特征的概率相同(一个粗糙但是有效的估计),其中出现了P次,没有出现N次,那么出现的概率就是p=P/(N+P),那么在logistic regression中,正事件的导数是p-1,负事件p,梯度的平方和就是:
6.采样训练数据:
CTR中的负样本远高与正样本,因此采样的数据包括满足所有的正样本和部分负样本:
在训练中给正样本1的权重,负样本1/r的权重以避免模型结果出错。权重乘如Loss Function对应项中。
四、模型评价1
1.进度验证(Progressive Validation)
因为计算梯度的同时需要计算预测值,因此可以收集这些值。在线的loss反映了算法的表现---他度量了训练一个数据前得到的预测结果。这样也使得所有数据被同时作用训练集和测试集使用。
2.可视化加强理解
上图对query进行了切片后,将两个模型与一个控制模型模型进行了比较。度量用颜色表示,每行是一个模型,每列是一个切片。
五、置信估计
六、预测矫正
矫正的数据p是模型预测的CTR,d是一些训练数据。
一个常用矫正:
两个参数可以用Poisson regression在数据上训练。
Google在KDD2013上关于CTR的一篇论文的更多相关文章
- google在nature上发表的关于量子计算机的论文(Quantum supremacy using a programmable superconducting processor 译)— 附论文
Google 2019年10月23号发表在Nature(<自然><科学>及<细胞>杂志都是国际顶级期刊,貌似在上面发文两篇,就可以评院士了)上,关于量子计算(基于 ...
- 使用Gardener在Google Cloud Platform上创建Kubernetes集群
Gardener是一个开源项目,github地址: https://github.com/gardener/gardener/ 使用Gardener,我们可以在几分钟之内在GCP, AWS, Azur ...
- 我在阿里这仨月 前端开发流程 前端进阶的思考 延伸学习的方式很简单:google 一个关键词你能看到十几篇优秀的博文,再这些博文中寻找新的关键字,直到整个大知识点得到突破
我在阿里这仨月 Alibaba 试用期是三个月,转眼三个月过去了,也到了转正述职的时间.回想这三个月做过的事情,很多很杂,但还是有重点. 本文谈一谈工作中遇到的各种场景,需要用到的一些前端知识,以及我 ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(上)
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...
- 使用Eclipse Memory Analyzer Tool(MAT)分析线上故障(一) - 视图&功能篇
Eclipse Memory Analyzer Tool(MAT)相关文章目录: 使用Eclipse Memory Analyzer Tool(MAT)分析线上故障(一) - 视图&功能篇 使 ...
- 用Visual Studio Code Debug世界上最好的语言(Mac篇)
用Visual Studio Code Debug世界上最好的语言(Mac篇) 首先,你要有台Macbook Pro,接着才继续看这个教程. PS:Windows用户看这里用Visual Studio ...
- 在Google的GKE上创建支持Internal Load Balancer的Service
在Google的Kubernetes Engine上发布service,可以采用除On-Promise相同的Cluster IP和NodePort两种方式外,还可以创建LoadBalaner的Serv ...
- http://dl-ssl.google.com/android上不去解决方案
转:https://blog.csdn.net/j04110414/article/details/44149653/ 一. 更新sdk,遇到了更新下载失败问题: Fetching https://d ...
- 在Google map图上做标记,并把标记相连接
<!DOCTYPE html> <html> <head> <title>GeoLocation</title> <meta name ...
随机推荐
- Cesium原理篇:3最长的一帧之地形(2:高度图)
这一篇,接着上一篇,内容集中在高度图方式构建地球网格的细节方面. 此时,Globe对每一个切片(GlobeSurfaceTile)创建对应的TileTerrain类,用来维 ...
- c#知识点总结
1.如果要使用自动属性的话,必须2个都是自动属性, 不允许出现一个自动,一个非自动的情况,否则会报错. 2.命名规则,最好用动词+名词 比如 Is+Member+Valid ,方法的首字母大写,变量的 ...
- MVC中局部视图的使用
加载部分视图 $("#result").load("/home/message",function(){ //加载完之后隐藏进度条 }); public Act ...
- 打造Orm经典,创CRUD新时代,Orm的反攻战
让我们开启数据库无Linq.零sql时代(续) 第一部分 MQL qq群:225656797 demo下载: 点此下载(既然下载,就支持该文,关注我的博客) Moon.Orm 5.0 (MQL版) 版 ...
- 在 C# 中执行 msi 安装
有时候我们需要在程序中执行另一个程序的安装,这就需要我们去自定义 msi 安装包的执行过程. 需求 比如我要做一个安装管理程序,可以根据用户的选择安装不同的子产品.当用户选择了三个产品时,如果分别显示 ...
- [转]C#中的string.Format()的JS版本
String.prototype.format = function (args) { var result = this; if (arguments.length > 0) { var re ...
- 简析.NET Core 以及与 .NET Framework的关系
简析.NET Core 以及与 .NET Framework的关系 一 .NET 的 Framework 们 二 .NET Core的到来 1. Runtime 2. Unified BCL 3. W ...
- jQuery弹出美女大图片
效果:http://hovertree.com/texiao/jqimg/2/ 效果图: 下载:http://hovertree.com/h/bjaf/jdaqepet.htm HTML代码: < ...
- Swift控制语句
前言 Swift提供了类似C语言的流程控制结构,包括可以多次执行任务的for和while循环.还有基于特定条件选择执行不同代码分支的if.guard和switch语句,还有控制流程跳转到其他代码的br ...
- 数据结构:链表(python版) 续:增加比较函数
题目: 基于元素相等操作"=="定义一个单链表的相等比较函数.另请基于字典序的概念,为链表定义大于,小于,大于等于,小于等于的判断 class LList: "" ...