luogu P2774 方格取数问题
有限制的问题,显然考虑全选再根据限制去掉的想法较优,我们发现一个点四周的点受限,其x或者y差一,也就是说奇偶性不同,那我们可以将其分成白点和黑点,就变成了最小割的问题,将每个白点向受限制的黑点连边,capacity为INF,每个黑点向汇点连边,capacity为该点的值,同理,源点向每个白点连边,这样受限的每一组之间都只会选出一个最小的来,通过capacity的限制来实现,最大流=最小割,将总和减去最小割(每一组最小的)就是答案
每一组黑白点,capacity来限制最小权,转换求最小割
#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL; const int maxm = 1e5+;
const int INF = 0x3f3f3f3f;
const int dx[] = {, -, , };
const int dy[] = {, , , -}; struct edge{
int u, v, cap, flow, nex;
} edges[maxm]; int head[maxm], cur[maxm], cnt, level[], buf[][], num[][], ID; void init() {
memset(head, -, sizeof(head));
} void add(int u, int v, int cap) {
edges[cnt] = edge{u, v, cap, , head[u]};
head[u] = cnt++;
} void addedge(int u, int v, int cap) {
add(u, v, cap), add(v, u, );
} void bfs(int s) {
memset(level, -, sizeof(level));
queue<int> q;
level[s] = ;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; i != -; i = edges[i].nex) {
edge& now = edges[i];
if(now.cap > now.flow && level[now.v] < ) {
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
} int dfs(int u, int t, int f) {
if(u == t) return f;
for(int& i = cur[u]; i != -; i = edges[i].nex) {
edge& now = edges[i];
if(now.cap > now.flow && level[u] < level[now.v]) {
int d = dfs(now.v, t, min(f, now.cap - now.flow));
if(d > ) {
now.flow += d;
edges[i^].flow -= d;
return d;
} }
}
return ;
} int dinic(int s, int t) {
int maxflow = ;
for(;;) {
bfs(s);
if(level[t] < ) break;
memcpy(cur, head, sizeof(head));
int f;
while((f = dfs(s, t, INF)) > )
maxflow += f;
}
return maxflow;
} void run_case() {
int m, n;
LL sum = ;
init();
cin >> n >> m;
int s = , t = m*n+;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
cin >> buf[i][j];
sum += buf[i][j];
num[i][j] = ++ID;
if((i+j)%==) addedge(s, ID, buf[i][j]);
else addedge(ID, t, buf[i][j]);
}
}
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) {
if((i+j)%==) continue;
for(int k = ; k < ; ++k) {
int nx = i+dx[k], ny = j+dy[k];
if(nx > n || nx < || ny > m || ny < ) continue;
addedge(num[i][j], num[nx][ny], INF);
}
}
sum -= dinic(s, t);
cout << sum;
} int main() {
ios::sync_with_stdio(false), cin.tie();
run_case();
cout.flush();
return ;
}
luogu P2774 方格取数问题的更多相关文章
- P2774 方格取数问题 网络最大流 割
P2774 方格取数问题:https://www.luogu.org/problemnew/show/P2774 题意: 给定一个矩阵,取出不相邻的数字,使得数字的和最大. 思路: 可以把方格分成两个 ...
- P2774 方格取数问题(网络流)
P2774 方格取数问题 emm........仔细一看,这不是最大权闭合子图的题吗! 取一个点$(x,y)$,限制条件是同时取$(x,y+1),(x,y-1),(x+1,y),(x-1,y)$,只不 ...
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)
Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...
- P2774 方格取数问题 网络流重温
P2774 方格取数问题 这个题目之前写过一次,现在重温还是感觉有点难,可能之前没有理解透彻. 这个题目要求取一定数量的数,并且这些数在方格里面不能相邻,问取完数之后和最大是多少. 这个很好的用了网络 ...
- P2774 方格取数问题 网络流
题目: P2774 方格取数问题 题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- P2774 方格取数问题(最小割)
P2774 方格取数问题 一看题目便知是网络流,但由于无法建图.... 题目直说禁止那些条件,这导致我们直接建图做不到,既然如此,我们这是就要逆向思维,他禁止那些边,我们就连那些边. 我们将棋盘染色, ...
- P2774 方格取数(网络流)
https://www.luogu.com.cn/problem/P2774 在一个有 m×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意2个数所在方格没有公共边,且取出的数的 ...
- P2774 方格取数问题
题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于 ...
随机推荐
- cent os 7.3修改mac地址方法
一.修改MAC地址方法 linux环境下: 需要用 #ifconfig eth0 down 先把网卡禁用 再用ifconfig eth0 hw ether 1234567890ab ...
- VS Code的git的使用方法
上一篇文章中记录了vscode中git的配置过程VS Code中配置git 这篇文章中记录下vscode中git的简单使用 vscode不是一个IDE没有新建工程的方法 我一般是在本地中新建一个工程文 ...
- 国密SM9算法C++实现(Linux)
首先参考 Linux下编译并使用miracl密码库 该博文在linux下编译Miracl库. 编译完了,自然是要用的,下面介绍两种在C程序中使用miracl库的方法. 方法一: 1. 源码编译完后的必 ...
- 【转载】 BIOS设置选项详细解释——CPU核心篇
原文地址: http://kuaibao.qq.com/s/20180226A1G1OC00?refer=spider ---------------------------------------- ...
- python第四节【函数】
函数 1. 函数 def greet_user(): """显示简单的问候语""" print("Hello") gre ...
- Java数字和字符的对照关系表
/* 数字和字符的对照关系表(编码表): ASCII码表:American Standard Code for Information Interchange,美国信息交换标准代码. Unicode码 ...
- Ansible自动化搭建及工具集和常见模块、命令详情(重点)
一.ansible介绍 1.ansible简介 官方的title是“Ansible is Simple IT Automation”——简单的自动化IT工具. Ansible跟其他IT自动化技术的区别 ...
- 创业学习---《如何预判创业可行性》--B-1.预判模块---HHR计划---以太一堂
<如何预判创业可行性>----对创业进行占卜 一,<开始学习> 1,预热思考题: (1)预判一个模式的可行性.你有一个朋友要创业,给你讲了他的创业计划,你帮他判断一下是否靠谱. ...
- Docker Learning Notes
Docker简介 是什么 问题:为什么会有docker出现 一款产品从开发到上线,从操作系统,到运行环境,再到应用配置.作为开发+运维之间的协作我们需要关心很多东西,这也是很多互联网公司都不得不面对的 ...
- Kubernetes的service资源介绍
service 三种工作模式:userspace.iptables.ipvs 删除手动创建的service [root@master ~]# kubectl delete svc redis serv ...