谈谈SQL优化
写SQL是学习数据库必须掌握的非常重要的技能之一。在学习过程当中,我们会尝试写各种各样满足需求的SQL语句。在实际项目中,优秀的SQL语句和普通的SQL语句的执行速度差别非常大。对于一个数据量很大的系统来说,并不能仅仅简单地实现基本的功能,更应该不断优化SQL语句,提高系统的性能。
在sql查询中为了提高查询效率,我们常常会采取一些措施对查询语句进行sql优化,总结一些方法如下:
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20 5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3 6.
避免在like操作中以通配符%开头:
select id from t where name like '%abc%' 7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2 8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'————name以abc开头的id
应改为:
select id from t where name like 'abc%' 9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。 10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,
否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。 11.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...) 12.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num) 13.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,
如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。 14.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,
因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。
一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。 15.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。
这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。 16.尽可能的使用 varchar 代替 char ,因为首先变长字段存储空间小,可以节省存储空间,
其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。 17.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。 18.避免频繁创建和删除临时表,以减少系统表资源的消耗。
19.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。 20.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,
以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
21.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。 22.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
————xujintang
谈谈SQL优化的更多相关文章
- 《高性能SQL调优精要与案例解析》一书谈主流关系库SQL调优(SQL TUNING或SQL优化)核心机制之——索引(index)
继<高性能SQL调优精要与案例解析>一书谈SQL调优(SQL TUNING或SQL优化),我们今天就谈谈各主流关系库中,占据SQL调优技术和工作半壁江山的.最重要的核心机制之一——索引(i ...
- 系统优化怎么做-SQL优化
大家好,这里是「聊聊系统优化 」,并在下列地址同步更新 博客园:http://www.cnblogs.com/changsong/ 知乎专栏:https://zhuanlan.zhihu.com/yo ...
- [转帖]TPC-C解析系列03_TPC-C基准测试之SQL优化
TPC-C解析系列03_TPC-C基准测试之SQL优化 http://www.itpub.net/2019/10/08/3330/ TPC-C是一个非常严苛的基准测试模型,考验的是一个完备的关系数据库 ...
- 19 个让 MySQL 效率提高 3 倍的 SQL 优化技巧
优化成本: 硬件>系统配置>数据库表结构>SQL及索引 优化效果: 硬件<系统配置<数据库表结构<SQL及索引 本文我们就来谈谈 MySQL 中常用的 SQL 优化 ...
- SQL查询与SQL优化[姊妹篇.第四弹]
在上一篇文章中,我们一起了解了关系模型与关系运算相关的知识,接下来我们一起谈谈,面对复杂的关系数据,我们如何来优化,SQL如何玩转更优呢? 在上一篇中抛出了4个关于优化方面的问题: 1.返回表中0.0 ...
- SQL优化案例—— RowNumber分页
将业务语句翻译成SQL语句不仅是一门技术,还是一门艺术. 下面拿我们程序开发工程师最常用的ROW_NUMBER()分页作为一个典型案例来说明. 先来看看我们最常见的分页的样子: WITH CTE AS ...
- sql 优化
1.选择最有效率的表名顺序(只在基于规则的优化器中有效): oracle的解析器按照从右到左的顺序处理 from 子句中的表名,from子句中写在最后的表(基础表driving table)将被最先处 ...
- SQL 优化总结
SQL 优化总结 (一)SQL Server 关键的内置表.视图 1. sysobjects SELECT name as '函数名称',xtype as XType FROM s ...
- (转)SQL 优化原则
一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用 系统提交实际应用后,随着数据库中数据的增加,系 ...
随机推荐
- 64位WIN7 配置IIS遇到问题
App_global.asax.sr8_llzl.dll' -- '拒绝访问. 设置c:windows\temp 目录访问权限 temp--> 属性-->安全-- > 添加IIS_I ...
- leetcode第24题:两两交换链表中的节点
通过分析,这属于数据结构类型题目,但涉及到多次交换,也需要算法知识. 首先,我想的是,将链表中节点相互交换. class Solution: def swapPairs(self, head: Lis ...
- IDEA无法启动:Failed to create JVM:error code -1
转自:https://blog.csdn.net/u013243986/article/details/52296944 随便设置把内存加大了, 结果idea就奔溃了,再打开时就提示这样的错误,Fai ...
- mysql 系列错误解决
参考文章来源 https://segmentfault.com/a/1190000015678751 https://blog.csdn.net/Tong_zhi/article/details/84 ...
- Flask添加新命令
代码: import click from flask import Flask app = Flask(__name__) @app.cli.command() def hg(): click.ec ...
- SIM卡的消失会让运营商们恐慌吗?
中国移动.联通.电信三大运营商原本高高在上,每天乐滋滋地数钱数到手抽筋,但近年来移动互联网的快速普及,让运营商的制霸状态不复存在.成为众多互联网公司的"流量通道",语音.短信等业 ...
- python3.4多线程实现同步的四种方式
临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区. 1. 锁机制 threadin ...
- 深度学习论文笔记:Fast R-CNN
知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时 ...
- C++走向远洋——56(项目二1、动物这样叫、虚函数)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- [ASP.NET Core 3框架揭秘] 服务承载系统[1]: 承载长时间运行的服务[上篇]
借助.NET Core提供的承载(Hosting)系统,我们可以将任意一个或者多个长时间运行(Long-Running)的服务寄宿或者承载于托管进程中.ASP.NET Core应用仅仅是该承载系统的一 ...