1-3.监督学习(supervised learning)
定义:监督学习指的就是我们给学习算法一个数据集,这个数据集由“正确答案”组成,然后运用学习算法,算出更多的正确答案。术语叫做回归问题
【监督学习可分为】:回归问题、分类问题。两种
例:一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。那基于这组数据,假如你有一个朋友他有一套 750 平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱?

解:
我们应用学习算法,可以在这组数据中画一条直线,或者换句话说,拟合一条直线,根
据这条线我们可以推测出,这套房子可能卖$150,000,当然这不是唯一的算法。可能还有更
好的,比如我们不用直线拟合这些数据,用二次方程去拟合可能效果会更好。根据二次方程
的曲线,我们可以从这个点推测出,这套房子能卖接近$200,000。稍后我们将讨论如何选择
学习算法,如何决定用直线还是二次方程来拟合。两个方案中有一个能让你朋友的房子出售
得更合理。这些都是学习算法里面很好的例子。以上就是监督学习的例子。
让我们来看一组数据:这个数据集中,横轴表示肿瘤的大小,纵轴上,我标出 1 和 0 表
示是或者不是恶性肿瘤。我们之前见过的肿瘤,如果是恶性则记为 1,不是恶性,或者说良
性记为 0。
我有 5 个良性肿瘤样本,在 1 的位置有 5 个恶性肿瘤样本。现在我们有一个朋友很不幸
检查出乳腺肿瘤。假设说她的肿瘤大概这么大,那么机器学习的问题就在于,你能否估算出
肿瘤是恶性的或是良性的概率。用术语来讲,这是一个分类问题。
分类指的是,我们试着推测出离散的输出值:0 或 1 良性或恶性,而事实上在分类问题
中,输出可能不止两个值。比如说可能有三种乳腺癌,所以你希望预测离散输出 0、1、2、
3。0 代表良性,1 表示第 1 类乳腺癌,2 表示第 2 类癌症,3 表示第 3 类,但这也是分类问
题。
因为这几个离散的输出分别对应良性,第一类第二类或者第三类癌症,在分类问题中我
们可以用另一种方式绘制这些数据点。
现在我用不同的符号来表示这些数据。既然我们把肿瘤的尺寸看做区分恶性或良性的特
征,那么我可以这么画,我用不同的符号来表示良性和恶性肿瘤。或者说是负样本和正样本
现在我们不全部画 X,良性的肿瘤改成用 O 表示,恶性的继续用 X 表示。来预测肿瘤的恶性与否。
在其它一些机器学习问题中,可能会遇到不止一种特征。举个例子,我们不仅知道肿瘤
的尺寸,还知道对应患者的年龄。在其他机器学习问题中,我们通常有更多的特征,我朋友
研究这个问题时,通常采用这些特征,比如肿块密度,肿瘤细胞尺寸的一致性和形状的一致
性等等,还有一些其他的特征。这就是我们即将学到最有趣的学习算法之一。
我们以后会讲一个算法,叫【支持向量机】,里面有一个巧妙的数学技巧,能让计算机处理无限多个特征。
【监督学习基本思想】是,我们数据集中的每个样本都有相应的“正确答案”。再根据这些样本作出预测。(就像房子和肿瘤的例子中做的那样)
【回归问题】Regression Problem,即通过回归来推出一个连续的输出,之后我们介绍了分类问题,其目标是为了推出一组离散的结果
【分类问题】Classification Problem,分类指的是,我们试着推测出离散的输出值:0 或 1 良性或恶性,而事实上在分类问题中,输出可能不止两个值
1-3.监督学习(supervised learning)的更多相关文章
- 监督学习Supervised Learning
In supervised learning, we are given a data set and already know what our correct output should look ...
- 如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)
监督学习:简单来说就是给定一定的训练样本(这里一定要注意,样本是既有数据,也有数据对应的结果),利用这个样本进行训练得到一个模型(可以说是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之 ...
- 监督学习(Supervised learning)
定义符号 m:训练样本的数目 n:特征的数量 x‘s:输入变/特征值 y‘s:输出变量/目标变量 (x,y):训练样本 ->(x(i),y(i)):训练集,第i个训练样本,i=1,2..,m 监 ...
- A brief introduction to weakly supervised learning(简要介绍弱监督学习)
by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难 ...
- (转载)[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation
[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/articl ...
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Introduction - Supervised Learning
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第一章<绪论:初识机器学习>中第3课时<监督学习>的视频原文字幕.为本人在视频学习过程中逐字逐句记 ...
- supervised learning|unsupervised learning
监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(下)
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(上)
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...
随机推荐
- Jupyter Notebooks usage
Important note: You should always work on a duplicate of the course notebook. On the page you used t ...
- (分治)输出前m大的数。。。
描述给定一个数组包含n个元素,统计前m大的数并且把这m个数从大到小输出.输入第一行包含一个整数n,表示数组的大小.n < 100000.第二行包含n个整数,表示数组的元素,整数之间以一个空格分开 ...
- msf自动连接postgresql配置
今天做了一下msf连接数据库的配置,中间碰到了一些坑点这里就不详细叙述了,开始正确的操作方式. 首先对postgresql进行配置以方便连接. root@kali:~# service postgre ...
- P1050 螺旋矩阵
P1050 螺旋矩阵 转跳点:
- P 1038 统计同成绩学生
转跳点:
- 获得spring
这里 手动下载 各版本的发行包 这里是 官方项目地址 这里是在 GitHub上托管源代码 的地方 已知spring依赖的其他jar commons-logging-1[1].0.4.jar
- 学习spring第6天(aop获取目标方法参数)
关于<aop:around>中的方法,需要第一个参数为ProceedJoinPoint,在方法体中通过该参数调用proceed()才能使目标方法得到调用. 当一个切面中有多个<aop ...
- 基础语法-选择结构switch
基础语法-选择结构switch 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Switch语句特点 switch语句选择的类型在jdk1.6只支持四种:byte,short,i ...
- 线程与进程 queue模块
queue模块的基本用法 https://www.cnblogs.com/chengd/articles/7778506.html 模块实现了3种类型的队列,区别在于队列中条目检索的顺序不同.在FIF ...
- PHP ~ 原生语法 ~ 根据从数据库查询数据之后快速输出 某个属性的值到 到页面
一,根据 id 来查询单个的数据 <?php require_once '../../conn.php'; $sql = "select * from blogarticle wher ...