2、numpy数据选取

lst=[[1, 2, 3], [4, 5, 6]]
np.array(lst)[:-1]
Out[32]: array([[1, 2, 3]])
np.array(lst)[:,:-1]
Out[33]:
array([[1, 2],
[4, 5]])

1、Python中numpy数组的拼接、合并

https://blog.csdn.net/qq_39516859/article/details/80666070

import numpy as np
#创建ndarray,array为数组,ndarray为n维数组 即 n dimension array
# <class 'numpy.ndarray'>
a=np.array([1,2,3]);print(a,type(a))
#numpy中数组,同一个数组中所有元素必须为同一个类型
#均为字符串类型
data=np.array([1,2,'a']);print(data)
data=np.mat(data);print(data) #数组行列的变换,即转置
# x*y -->> y*x
data=[[1,2],[3,4]]
new_data=np.array(data).transpose();print(new_data) #1*2*3 -->> 3*2*1
data=[[[1,2,3],[4,5,6]]]
new_data=np.array(data).transpose();print(new_data) #1*2*3 -->>1*3*2
new_data=np.array([i.transpose() for i in np.array(data)]);print(new_data)
#如何向ndarray中添加元素 #数组中所有数据合并
data=np.arange(12).reshape((3,4))
new_data=data.ravel();print(new_data) #1*1 按行合并
new_data=data.ravel('F');print(new_data) #1*1 按列合并 #创建矩阵 <class 'numpy.matrixlib.defmatrix.matrix'>
# ValueError: matrix must be 2-dimensional
b=np.mat(a);print(b,type(b))
c=np.mat([[1,2,3]]);print(c,type(c)) #创建常见矩阵
#0矩阵、全1矩阵、0-1均匀分布、小于10整数、2-8之间整数、2*2对角线为1矩阵
data=np.mat(np.zeros((3,3)));print(data)
data=np.mat(np.ones((2,4)));print(data)
data=np.mat(np.random.rand(2,2));print(data)
data=np.mat(np.random.randint((10),size=(3,3)));print(data)
data=np.mat(np.random.randint(2,8,size=(2,5)));print(data)
data=np.mat(np.eye(2,2,dtype=int));print(data) #常见矩阵运算
data1=np.mat(np.array([[1,2],[3,4]]))
data2=np.mat(np.array([[1,1],[1,1]]))
#矩阵相乘
data=data1*data2;print(data)
#矩阵点乘
data=np.multiply(data1,data2);print(data)
#矩阵求逆、转置
data=data1.I;print(data)
data=data1.T;print(data) #数组、矩阵转换为列表
data=np.array([1,2]).tolist();print(data)
data=data1.tolist();print(data) #矩阵的分隔和合并
data1=np.mat(np.array([[1,2],[3,4]]))
new_data=data1[:1,:1];print(new_data)
#合并、按列合并
new_data=np.vstack((data1,data1));print(new_data)
#合并、按行合并
new_data=np.hstack((data1,data1));print(new_data) #计算每一列、每一行的和
new_data=data1.sum(axis=0);print(new_data) #列和 1*2矩阵
new_data=data1.sum(axis=1);print(new_data) #行和 2*1矩阵
#计算第二行所有列和,得到一个数字
new_data=np.sum(data1[1,:]);print(new_data) #计算最大、最小值和索引
new_data=data1.max();print(new_data) #所有元素最大值
new_data=data1.min();print(new_data) #所有元素最小值
new_data=np.max(data1,0);print(new_data) #计算所有列最大值
new_data=np.max(data1,1);print(new_data) #计算所有行最大值
new_data=np.argmax(data1,0);print(new_data) #计算所有列最大值索引
new_data=np.argmax(data1,1);print(new_data) #计算所有行最大值索引

python numpy和矩阵的更多相关文章

  1. Python numpy中矩阵的用法总结

    关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...

  2. python中的矩阵、多维数组----numpy

    https://docs.scipy.org/doc/numpy-dev/user/quickstart.html  (numpy官网一些教程) numpy教程:数组创建 python中的矩阵.多维数 ...

  3. Python/Numpy大数据编程经验

    Python/Numpy大数据编程经验 1.边处理边保存数据,不要处理完了一次性保存.不然程序跑了几小时甚至几天后挂了,就啥也没有了.即使部分结果不能实用,也可以分析程序流程的问题或者数据的特点.   ...

  4. python numpy笔记(重要)

    1.np.array 的shape (2,)与(2,1)含义 ndarray.shape:数组的维度.为一个表示数组在每个维度上大小的整数元组.例如二维数组中,表示数组的“行数”和“列数”. ndar ...

  5. 关于python中的矩阵乘法(array和mat类型)

    关于python中的矩阵乘法,我们一般有两种数据格式可以实现:np.array()类型和np.mat()类型: 对于这两种数据类型均有三种操作方式: (1)乘号 * (2)np.dot() (3)np ...

  6. Python NumPy学习总结

    一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...

  7. Python Numpy shape 基础用法(转自他人的博客,如涉及到侵权,请联系我)

    Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入 ...

  8. python数组和矩阵使用总结

    python数组和矩阵使用总结 1.数组和矩阵常见用法 Python使用NumPy包完成了对N-维数组的快速便捷操作.使用这个包,需要导入numpy. SciPy包以NumPy包为基础,大大的扩展了n ...

  9. CS231n课程笔记翻译1:Python Numpy教程

    译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客翻译完成,Flood Sung ...

随机推荐

  1. 重装系统,新安装IDEA启动项目后,classnotfound:com.mysql.jdbc.Driver

    我最后解决是:这个Test connection会自动帮你下载的,但是如果中途一直叫你try again,甚至到后面点这个test connection有弹窗,但是单窗里面的选项你点击后没反应,我是直 ...

  2. IP地址 网络地址 子网掩码

    提纲 (1)IP地址 (2)网络地址 (3)子网掩码     IP地址=网络地址+主机地址,图1中的IP地址是192.168.100.1,这个地址中包含了很多含义.如下所示:网络地址(相当于街道地址) ...

  3. 使用Def文件导出Dll文件

    模块定义 (.def) 文件是包含一个或多个描述 DLL 各种属性的 Module 语句的文本文件.如果不使用 __declspec(dllexport) 关键字导出 DLL 的函数,则 DLL 需要 ...

  4. Redis 详解 (七) AOF 持久化

    目录 1.AOF简介 2.AOF 配置 3.开启 AOF 4.AOF 文件恢复 5. AOF 重写 6.AOF的优缺点 上一篇文章我们介绍了Redis的RDB持久化,RDB 持久化存在一个缺点是一定时 ...

  5. 四、JavaScript之<script>标签的使用

    一.代码如下 二.运行效果如下 <!DOCTYPE html> <html> <meta http-equiv="Content-Type" cont ...

  6. 九十二、SAP中ALV事件之六,复制一个标准工具栏到自己的程序

    一.我们来到SE41,点击复制状态按钮 二.点击复制状态后,弹出一个框框,上面是模板内容,下面是我们自己的程序 三.我们根据上一篇的标准模板内容,填好相应的模板和我们的程序的内容 三.点击复制按钮 五 ...

  7. 新手学Java,有哪些入门知识点?

    很多小伙伴们在刚接触Java的时候,会有些迷茫,不知道该从哪里入手,不管是做前端还是后端,程序员都会用到JAVA,那该掌握哪些必要的基础知识呢.今天就跟大家分享新手学Java,有哪些入门知识点? 下面 ...

  8. 14 SQLite数据库

    SQLite数据库SQLite 是一款轻型的数据库SQLite 的设计目标是嵌入式的SQLite 占用资源低SQL 指结构化查询语言SQL 使我们有能力访问数据库SQL 是一种 ANSI 的标准计算机 ...

  9. 二、【重点】环境安装:通过淘宝 cnpm 快速安装使用 React,生成项目,运行项目、安装项目

    1.cnpm代替npm 如果你的系统还不支持 Node.js 及 NPM 可以参考我们的 Node.js 教程. 我们建议在 React 中使用 CommonJS 模块系统,比如 browserify ...

  10. Java的优先队列PriorityQueue详解

    一.优先队列概述 优先队列PriorityQueue是Queue接口的实现,可以对其中元素进行排序, 可以放基本数据类型的包装类(如:Integer,Long等)或自定义的类 对于基本数据类型的包装器 ...