2、numpy数据选取

lst=[[1, 2, 3], [4, 5, 6]]
np.array(lst)[:-1]
Out[32]: array([[1, 2, 3]])
np.array(lst)[:,:-1]
Out[33]:
array([[1, 2],
[4, 5]])

1、Python中numpy数组的拼接、合并

https://blog.csdn.net/qq_39516859/article/details/80666070

import numpy as np
#创建ndarray,array为数组,ndarray为n维数组 即 n dimension array
# <class 'numpy.ndarray'>
a=np.array([1,2,3]);print(a,type(a))
#numpy中数组,同一个数组中所有元素必须为同一个类型
#均为字符串类型
data=np.array([1,2,'a']);print(data)
data=np.mat(data);print(data) #数组行列的变换,即转置
# x*y -->> y*x
data=[[1,2],[3,4]]
new_data=np.array(data).transpose();print(new_data) #1*2*3 -->> 3*2*1
data=[[[1,2,3],[4,5,6]]]
new_data=np.array(data).transpose();print(new_data) #1*2*3 -->>1*3*2
new_data=np.array([i.transpose() for i in np.array(data)]);print(new_data)
#如何向ndarray中添加元素 #数组中所有数据合并
data=np.arange(12).reshape((3,4))
new_data=data.ravel();print(new_data) #1*1 按行合并
new_data=data.ravel('F');print(new_data) #1*1 按列合并 #创建矩阵 <class 'numpy.matrixlib.defmatrix.matrix'>
# ValueError: matrix must be 2-dimensional
b=np.mat(a);print(b,type(b))
c=np.mat([[1,2,3]]);print(c,type(c)) #创建常见矩阵
#0矩阵、全1矩阵、0-1均匀分布、小于10整数、2-8之间整数、2*2对角线为1矩阵
data=np.mat(np.zeros((3,3)));print(data)
data=np.mat(np.ones((2,4)));print(data)
data=np.mat(np.random.rand(2,2));print(data)
data=np.mat(np.random.randint((10),size=(3,3)));print(data)
data=np.mat(np.random.randint(2,8,size=(2,5)));print(data)
data=np.mat(np.eye(2,2,dtype=int));print(data) #常见矩阵运算
data1=np.mat(np.array([[1,2],[3,4]]))
data2=np.mat(np.array([[1,1],[1,1]]))
#矩阵相乘
data=data1*data2;print(data)
#矩阵点乘
data=np.multiply(data1,data2);print(data)
#矩阵求逆、转置
data=data1.I;print(data)
data=data1.T;print(data) #数组、矩阵转换为列表
data=np.array([1,2]).tolist();print(data)
data=data1.tolist();print(data) #矩阵的分隔和合并
data1=np.mat(np.array([[1,2],[3,4]]))
new_data=data1[:1,:1];print(new_data)
#合并、按列合并
new_data=np.vstack((data1,data1));print(new_data)
#合并、按行合并
new_data=np.hstack((data1,data1));print(new_data) #计算每一列、每一行的和
new_data=data1.sum(axis=0);print(new_data) #列和 1*2矩阵
new_data=data1.sum(axis=1);print(new_data) #行和 2*1矩阵
#计算第二行所有列和,得到一个数字
new_data=np.sum(data1[1,:]);print(new_data) #计算最大、最小值和索引
new_data=data1.max();print(new_data) #所有元素最大值
new_data=data1.min();print(new_data) #所有元素最小值
new_data=np.max(data1,0);print(new_data) #计算所有列最大值
new_data=np.max(data1,1);print(new_data) #计算所有行最大值
new_data=np.argmax(data1,0);print(new_data) #计算所有列最大值索引
new_data=np.argmax(data1,1);print(new_data) #计算所有行最大值索引

python numpy和矩阵的更多相关文章

  1. Python numpy中矩阵的用法总结

    关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...

  2. python中的矩阵、多维数组----numpy

    https://docs.scipy.org/doc/numpy-dev/user/quickstart.html  (numpy官网一些教程) numpy教程:数组创建 python中的矩阵.多维数 ...

  3. Python/Numpy大数据编程经验

    Python/Numpy大数据编程经验 1.边处理边保存数据,不要处理完了一次性保存.不然程序跑了几小时甚至几天后挂了,就啥也没有了.即使部分结果不能实用,也可以分析程序流程的问题或者数据的特点.   ...

  4. python numpy笔记(重要)

    1.np.array 的shape (2,)与(2,1)含义 ndarray.shape:数组的维度.为一个表示数组在每个维度上大小的整数元组.例如二维数组中,表示数组的“行数”和“列数”. ndar ...

  5. 关于python中的矩阵乘法(array和mat类型)

    关于python中的矩阵乘法,我们一般有两种数据格式可以实现:np.array()类型和np.mat()类型: 对于这两种数据类型均有三种操作方式: (1)乘号 * (2)np.dot() (3)np ...

  6. Python NumPy学习总结

    一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...

  7. Python Numpy shape 基础用法(转自他人的博客,如涉及到侵权,请联系我)

    Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入 ...

  8. python数组和矩阵使用总结

    python数组和矩阵使用总结 1.数组和矩阵常见用法 Python使用NumPy包完成了对N-维数组的快速便捷操作.使用这个包,需要导入numpy. SciPy包以NumPy包为基础,大大的扩展了n ...

  9. CS231n课程笔记翻译1:Python Numpy教程

    译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客翻译完成,Flood Sung ...

随机推荐

  1. mysql 免安装版后续操作

    在安装好mysql后,软件默认的root用户的密码为空. 1.进入mysql 2.创建数据库 3.创建表格 4.插入数据 5.显示数据库.表信息

  2. netty权威指南学习笔记六——编解码技术之MessagePack

    编解码技术主要应用在网络传输中,将对象比如BOJO进行编解码以利于网络中进行传输.平常我们也会将编解码说成是序列化/反序列化 定义:当进行远程跨进程服务调用时,需要把被传输的java对象编码为字节数组 ...

  3. [LeetCode] 929. Unique Email Addresses 独特的邮件地址

    Every email consists of a local name and a domain name, separated by the @ sign. For example, in ali ...

  4. namenode节点无法自动切换主从

    当停掉主namenode节点,从节点无法切换到active状态,有两种可能导致这种问题 1.查看namenode上的zkfc日志,发现没有fuser命令,需要手动安装 yum install -y p ...

  5. 干货分享:常见的留学生Essay写作逻辑结构

    任何一种类型的Essay写作都应遵循一种逻辑结构,Long Essay可能在不同部分依据情况使用不同的逻辑结构.本文将为大家分享六种常见留学生Essay写作逻辑结构,为方便阅读本文采用中英文对照方式. ...

  6. 操作系统类型&操作系统结构&现代操作系统基本特征

    五大类型操作系统 (1). 批处理操作系统 用户脱机使用计算机 用户提交作业之后直到获得结果之前就不再和计算机打交道. 作业提交的方式可以是直接交给计算中心的管理操作员,也可以是通过远程通讯线路提交. ...

  7. python中的__code__

    简单总结几个常用的__code__的用法: (1)func.__code__.co_argcount:返回函数的参数个数,这里的参数个数不包含*args与**kwargs,具体来讲就是*args前的参 ...

  8. SpringMVC: JSON

    SpringMVC:JSON讲解 什么是JSON? JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式,目前使用特别广泛. 采用完全独立于编 ...

  9. 每天一点点之laravel框架开发 - Laravel5.6去除URL中的index.php

    在项目routes/web.php文件中添加了自定义的路由后,访问localhost/index.php/aaa,可以正常访问,但是去掉index.php后,提示404 Not Found 1. 按照 ...

  10. 51nod 1475:建设国家 优先队列的好题

    1475 建设国家 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 小C现在想建设一个国家.这个国家中有一个首都,然后有若干个中间站,还有若干个城市 ...