Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 15664   Accepted: 6865

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.

The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

Source

Japan 2003 Domestic

这个题主要还是考察建图,将空间站的形状看成球即可。两空间站的cell 之间的距离应该为空间距离减去两空间站cell的半径,即为sqrt((x1-x2)^2+(y1-y2)^2+(z1-z2)^2)-r1-r2。剩下的就是求一颗最新小生成树,因为在做最小生成树专题,对于题目的判断还是不能锻炼,这里告诉你了是最小生成树,顺着这个思路向下去想,很容易就找到了解决的思路。稠密图,直接Prim盘他

#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
//---------------------------------Sexy operation--------------------------// #define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define debug(n) printf("%d_________________________________\n",n);
#define speed ios_base::sync_with_stdio(0)
#define file freopen("input.txt","r",stdin);freopen("output.txt","w",stdout)
//-------------------------------Actual option------------------------------//
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Swap(a,b) a^=b^=a^=b
#define Max(a,b) (a>b?a:b)
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define mp(a,b) make_pair(a,b)
#define pb(n) push_back(n)
#define dis(a,b,c,d) ((double)sqrt((a-c)*(a-c)+(b-d)*(b-d)))
//--------------------------------constant----------------------------------// #define INF 0x3f3f3f3f
#define esp 1e-9
#define PI acos(-1)
using namespace std;
struct node
{
double x,y,z,r;
int i;
}f[101];
double low[101];
double G[101][101];
void calc(const node &a,const node &b){
double dis=sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2)+pow(a.z-b.z,2));
if(dis<a.r+b.r)
G[a.i][b.i]=G[b.i][a.i]=0;
else
G[a.i][b.i]=G[b.i][a.i]=dis-(a.r+b.r);
}
double prim(int n)
{
double ans=0,min;
bool vis[101]={0};
int pos=0,i,j;
for(int i=0;i<n;++i)
low[i]=G[0][i];
vis[pos]=true;
for(i=1;i<n;++i ){
for(j=0,min=low[j],pos=j;j<n;++j)if(!vis[j]){
if(low[j]<min){
min=low[j];
pos=j;
}
}
ans+=min;
vis[pos]=true;
for(j=0;j<n;++j){
if(!vis[j]&&low[j]>G[pos][j]){
low[j]=G[pos][j];
}
}
}
return ans; }
int main()
{
int n;
while(scanf("%d",&n),n){
for(int i=0;i<n;++i){
scanf("%lf %lf %lf %lf",
&f[i].x,&f[i].y,&f[i].z,&f[i].r);
f[i].i=i;
}
for(int i=0;i<n;++i)
for(int j=0;j<n;++j)if(i==j)
G[i][j]=100000000.00;//给double赋值一定要.000不然WA for(int j=0;j<n;++j)
for(int i=j+1;i<n;++i){
calc(f[j],f[i]);
} printf("%.3lf\n",prim(n));
}
}

POJ Building a Space Station 最小生成树的更多相关文章

  1. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  3. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  4. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  5. poj Building a Space Station

    http://poj.org/problem?id=2031 #include<cstdio> #include<cstring> #include<cmath> ...

  6. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  7. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  8. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  9. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

随机推荐

  1. flask-url参数

    flask-url参数 无约束(string)传参 from flask import Flask app = Flask(__name__) @app.route('/<id>') de ...

  2. python3启动子进程之 os.fork()

    python3启动子进程之 os.fork() 先了解python3 os.fork()  使用说明 在生物学家开始克隆研究之前,计算机科学家就拥有成功的克隆历史.他们克隆了进程,尽管他们没有将其称为 ...

  3. 《面试经典系列》- SpringMVC原理及工作流程

    前言 SpringMVC 作为 MVC 的开源框架,现在依旧是不少项目使用的重点框架.SpringMVC = Struts2 + Spring,SpringMVC就相当于 Struts2 + Spri ...

  4. CH5501 环路运输(单调栈)

    传送门 思路: 遇到一个环,用正常人类的思想就先把环从中间截断然后将其补成2*n长度的链.环上的最小距离换到链上就是i以n/2为半径范围内的点(画图肉眼可见).由于两个点是等价的,所以我们考虑有序对( ...

  5. BMI的Python实现

    str1 = float(input('请输入您的身高(单位:米):')) # input默认转化为字符串型 用float转化为浮点型 str2 = float(input('请输入您的体重(单位:千 ...

  6. HTTPS工作流程

    HTTPS工作流程 RSA算法 RSA的密钥分成两个部分: PublicKey 加密数据 验证签名 不能解密 任何人都可以获得 Private Key 数据签名(摘要算法) 解密 加密(不用此功能) ...

  7. svg整体缩放至指定大小

    一.问题 svg画面跑在分辨率低的电脑上,导致不能完全显示. 二.要求 svg要能够根据电脑的屏幕大小自动缩放至适配电脑的尺寸. 三.实现 1.获取本机窗口高度.宽度 let clientWidth ...

  8. three.js obj转js的详细步骤 convert_obj_three.py的用法

    three.js是最近非常流行的一个前端webgl库. js格式的模型文件是three.js中可以直接加载的文件.使用THREE.JSONLoader()直接加载,而不需要引用其它的loader插件. ...

  9. M - Help Hanzo LightOJ - 1197 (大区间素数筛法)

    题解:素数区间问题.注意到a和b的范围是1<<31,所以直接暴力打表肯定不可以.如果一个数是合数,他的两个因子要么是两个sqrt(x),要么就分布在sqrt(x)两端,所以我们可以根据sq ...

  10. Gradle系列之Groovy基础篇

    原文发于微信公众号 jzman-blog,欢迎关注交流. 上一篇学习了 Gradle 的入门知识,Gradle 基于 Groovy,今天学习一下 Groovy 的基础知识,Groovy 是基于 JVM ...