http://www.lydsy.com/JudgeOnline/problem.php?id=3887||

https://www.luogu.org/problem/show?pid=3119

Description

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X. Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once). As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.
给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

Input

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000). The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

Output

A single line indicating the maximum number of distinct fields Bessie
can visit along a route starting and ending at field 1, given that she can
follow at most one path along this route in the wrong direction.
 

Sample Input

7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7

Sample Output

6

HINT

 

Source

Gold&鸣谢18357

先把原图缩点,跑出从1到n和从n到1的最多可以遍历的牧场数,

枚举每个边做无向边的情况更新答案

SPFA跑最多牧场数

 #include <cstdio>
#include <queue>
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b) const int INF(0x3f3f3f3f);
const int N(1e5+);
int n,head[N],sumedge;
struct Edge
{
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[N];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
} int tim,dfn[N],low[N];
int top,Stack[N],instack[N];
int sumcol,col[N],point[N];
void DFS(int u)
{
low[u]=dfn[u]=++tim;
Stack[++top]=u; instack[u]=;
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v]) DFS(v),low[u]=min(low[u],low[v]);
else if(instack[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
col[u]=++sumcol;
point[sumcol]++;
for(;Stack[top]!=u;top--)
{
point[sumcol]++;
col[Stack[top]]=sumcol;
instack[Stack[top]]=;
}
instack[u]=; top--;
}
} int hed[N],had[N],sum;
struct E
{
int v,next,w;
E(int v=,int next=,int w=):v(v),next(next),w(w){}
}e[N][];
inline void insert(int u,int v)
{
e[++sum][]=E(v,hed[u],point[v]);
hed[u]=sum;
e[sum][]=E(u,had[v],point[u]);
had[v]=sum;
} bool inq[N];
int v1[N],v2[N];
void SPFA(int op,int s,int *val,int *head)
{
for(int i=;i<=sumcol;i++)
inq[i]=,val[i]=-INF;
val[s]=point[s];
std::queue<int>que;
que.push(s);
for(int u,v;!que.empty();)
{
u=que.front(); que.pop(); inq[u]=;
for(int i=head[u];i;i=e[i][op].next)
{
v=e[i][op].v;
if(val[v]<val[u]+e[i][op].w)
{
val[v]=val[u]+e[i][op].w;
if(!inq[v]) inq[v]++,que.push(v);
}
}
}
} inline void read(int &x)
{
x=; register char ch=getchar();
for(;ch>''||ch<'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
} int AC()
{
int m; read(n),read(m);
for(int u,v;m--;)
read(u),read(v),ins(u,v);
for(int i=;i<=n;i++)
if(!dfn[i]) DFS(i);
for(int v,u=;u<=n;u++)
for(int i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(col[u]!=col[v]) insert(col[u],col[v]);
}
int ans=-INF;
SPFA(,col[],v1,hed);
SPFA(,col[],v2,had);
for(int v,u=;u<=sum;u++)
for(int i=hed[u];i;i=e[i][].next)
{
v=e[i][].v;
ans=max(ans,v1[v]+v2[u]);
}
for(int v,u=;u<=sum;u++)
for(int i=had[u];i;i=e[i][].next)
{
v=e[i][].v;
ans=max(ans,v1[u]+v2[v]);
}
printf("%d\n",ans-point[col[]]);
return ;
} int Hope=AC();
int main(){;}

SPFA AC

Topsort跑最多牧场数

 #include <cstdio>
#include <queue>
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b) const int INF(0x3f3f3f3f);
const int N(1e5+);
int n,head[N],sumedge;
struct Edge
{
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[N];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
} int tim,dfn[N],low[N];
int top,Stack[N],instack[N];
int sumcol,col[N],point[N],rd[N],cd[N];
void DFS(int u)
{
low[u]=dfn[u]=++tim;
Stack[++top]=u; instack[u]=;
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v]) DFS(v),low[u]=min(low[u],low[v]);
else if(instack[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
col[u]=++sumcol;
point[sumcol]++;
for(;Stack[top]!=u;top--)
{
point[sumcol]++;
col[Stack[top]]=sumcol;
instack[Stack[top]]=;
}
instack[u]=; top--;
}
} int hed[N],had[N],sum;
struct E
{
int v,next,w;
E(int v=,int next=,int w=):v(v),next(next),w(w){}
}e[N][];
inline void insert(int u,int v)
{
e[++sum][]=E(v,hed[u],point[v]);
hed[u]=sum;
e[sum][]=E(u,had[v],point[u]);
had[v]=sum;
} int v1[N],v2[N];
#define max(a,b) (a>b?a:b)
void Topsort(int op,int s,int *val,int *head,int *du)
{
std::queue<int>que;
for(int i=;i<=sumcol;i++)
{
if(!du[i]) que.push(i);
val[i]=-INF;
}
val[s]=point[s];
for(int u,v;!que.empty();)
{
u=que.front(); que.pop();
for(int i=head[u];i;i=e[i][op].next)
{
v=e[i][op].v;
val[v]=max(val[v],val[u]+e[i][op].w);
if(--du[v]==) que.push(v);
}
}
} inline void read(int &x)
{
x=; register char ch=getchar();
for(;ch>''||ch<'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
} int AC()
{
int m; read(n),read(m);
for(int u,v;m--;)
read(u),read(v),ins(u,v);
for(int i=;i<=n;i++)
if(!dfn[i]) DFS(i);
for(int v,u=;u<=n;u++)
for(int i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(col[u]==col[v]) continue;
rd[col[v]]++,cd[col[u]]++;
insert(col[u],col[v]);
}
int ans=-INF;
Topsort(,col[],v1,hed,rd);
Topsort(,col[],v2,had,cd);
for(int v,u=;u<=sum;u++)
for(int i=hed[u];i;i=e[i][].next)
{
v=e[i][].v;
ans=max(ans,v1[v]+v2[u]);
}
for(int v,u=;u<=sum;u++)
for(int i=had[u];i;i=e[i][].next)
{
v=e[i][].v;
ans=max(ans,v1[u]+v2[v]);
}
printf("%d\n",ans-point[col[]]);
return ;
} int Hope=AC();
int main(){;}

Topsort AC

洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur的更多相关文章

  1. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  2. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  3. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  4. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...

  5. 洛谷P3119 USACO15JAN 草鉴定

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  6. 洛谷3119 [USACO15JAN]草鉴定Grass Cownoisseur

    原题链接 显然一个强连通分量里所有草场都可以走到,所以先用\(tarjan\)找强连通并缩点. 对于缩点后的\(DAG\),先复制一张新图出来,然后对于原图中的每条边的终点向新图中该边对应的那条边的起 ...

  7. P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  8. luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  9. P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路

    https://www.luogu.org/problemnew/show/P3119 题意 有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点. 思路 (一)首先先缩点.自己在缩 ...

随机推荐

  1. PHP图像操作类

    基于已给出的各种图像操作方法,这里我总结出了PHP图像操作的一个类,包含给图像加入文字水印.图像水印和压缩图片. 读者可自行加入功能. <? php class Image { private ...

  2. Sinowal Bootkit 分析-中国红客网络技术联盟 - Powered by Discuz!

    訪问原文 (一)模块组成         感染过Sinowal的电脑,Sinaowal在硬盘中的分布例如以下图: ; Sector                 Offset             ...

  3. iOS10 推送通知详解(UserNotifications)

    iOS10新增加了一个UserNotificationKit(用户通知框架)来整合通知相关的API,UserNotificationKit框架增加了很多令人惊喜的特性: 更加丰富的推送内容:现在可以设 ...

  4. poj 3913(水)

    Description You have devised a new encryption technique which encodes a message by inserting between ...

  5. iOS布局---pch头文件设置和字号适配

    由于4s,5s,6,6p,界面尺寸差别过大,如果在界面上,只是用同一个字号,在4s和5s上就会略显偏大,而在6p上就会显小.并且ios9系统原生字体相较于ios8和之前原生字体略粗,在字号上也错了一号 ...

  6. Python关于super()函数的理解

    看下面的例子: class A: def __init__(self, name): self.name = name def bb(self): print('没事就爱瞎BB') class B(A ...

  7. Css float 盒子模型 position

    属性: float 浮动 浮动的内容用div包起来,给div设置宽高 clear 清除浮动. box-sizing 标准模式下的盒模型 content-box:(默认属性) padding和borde ...

  8. 查询 MySQL 库/表相关信息

    SHOW DATABASES //列出 MySQL Server 数据库. SHOW TABLES [FROM db_name] //列出数据库数据表. SHOW CREATE TABLES tbl_ ...

  9. 更改 AVD 默认存放位置

    AVD Manager 创建的 Android 模拟器(AVD)默认存放位置为C:\Users\<user>\.android\avd,我创建了2个AVD,一共用了近9G!是要挪挪地方了. ...

  10. 改造PAXOS算法消灭活锁

    分布式一致性协议的目的是确定一个不可变变量分布式存储的取值:通过对国内外一致性算法的研究成果和PAXOS协议活锁的分析,发现引入一个角色作为竞争时的代理提交者就可以解决活锁问题,从而在本文引入“代理提 ...