1、http://codeforces.com/problemset/problem/149/D

2、题目大意

给一个给定括号序列,给该括号上色,上色有三个要求

1、只有三种上色方案,不上色,上红色,上蓝色

2、每对括号必须只能给其中的一个上色

3、相邻的两个不能上同色,可以都不上色

求0-len-1这一区间内有多少种上色方案,很明显的区间DP

dp[l][r][i][j]表示l-r区间两端颜色分别是i,j的方案数

0代表不上色,1代表上红色,2代表上蓝色

对于l-r区间,有3种情况

1、if(l+1==r) 说明就只有一对,那么dp[l][r][0][1]=1;

        dp[l][r][1][0]=1;

        dp[l][r][0][2]=1;

        dp[l][r][2][0]=1;

2、if(l与r是配对的)

递归(l+1,r-1)

状态转移dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod; dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;

dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod; dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;

3、if(l与r不配对)

dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;

3、题目:

D. Coloring Brackets
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.

You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")")
brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()"
are correct bracket sequences and such sequences as ")()" and "(()" are not.

In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:

  • Each bracket is either not colored any color, or is colored red, or is colored blue.
  • For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
  • No two neighboring colored brackets have the same color.

Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).

Input

The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.

Output

Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).

Sample test(s)
Input
(())
Output
12
Input
(()())
Output
40
Input
()
Output
4
Note

Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

 

The two ways of coloring shown below are incorrect.

 

4、AC代码:

  1. #include<stdio.h>
  2. #include<string.h>
  3. #include<algorithm>
  4. using namespace std;
  5. #define N 705
  6. #define mod 1000000007
  7. char s[N];
  8. int match[N];
  9. int tmp[N];
  10. long long dp[N][N][3][3];
     //注意用longlong
  11. void getmatch(int len)
  12. {
  13. int p=0;
  14. for(int i=0; i<len; i++)
  15. {
  16. if(s[i]=='(')
  17. tmp[p++]=i;
  18. else
  19. {
  20. match[i]=tmp[p-1];
  21. match[tmp[p-1]]=i;
  22. p--;
  23. }
  24. }
  25. }
  26. void dfs(int l,int r)
  27. {
  28. if(l+1==r)
  29. {
  30. dp[l][r][0][1]=1;
  31. dp[l][r][1][0]=1;
  32. dp[l][r][0][2]=1;
  33. dp[l][r][2][0]=1;
  34. return ;
  35. }
  36. if(match[l]==r)
  37. {
  38. dfs(l+1,r-1);
  39. for(int i=0;i<3;i++)
  40. {
  41. for(int j=0;j<3;j++)
  42. {
  43. if(j!=1)
  44. dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod;
  45. if(i!=1)
  46. dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
  47. if(j!=2)
  48. dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod;
  49. if(i!=2)
  50. dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
  51. }
  52. }
  53. return ;
  54. }
  55. else
  56. {
  57. int p=match[l];
  58. dfs(l,p);
  59. dfs(p+1,r);
  60. for(int i=0;i<3;i++)
  61. {
  62. for(int j=0;j<3;j++)
  63. {
  64. for(int k=0;k<3;k++)
  65. {
  66. for(int q=0;q<3;q++)
  67. {
  68. if(!((k==1 && q==1) || (k==2 && q==2)))
  69. dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;
  70. }
  71. }
  72. }
  73. }
  74. }
  75. }
  76. int main()
  77. {
  78. while(scanf("%s",s)!=EOF)
  79. {
  80. int len=strlen(s);
  81. getmatch(len);
  82. memset(dp,0,sizeof(dp));
  83. dfs(0,len-1);
  84. long long ans=0;
  85. for(int i=0;i<3;i++)
  86. {
  87. for(int j=0;j<3;j++)
  88. {
  89. ans=(ans+dp[0][len-1][i][j])%mod;
  90. }
  91. }
  92. printf("%ld\n",ans);
  93. }
  94. return 0;
  95. }

CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)的更多相关文章

  1. CF 149D Coloring Brackets 区间dp ****

    给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...

  2. codeforces 149D Coloring Brackets (区间DP + dfs)

    题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...

  3. CodeForces 149D Coloring Brackets 区间DP

    http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...

  4. codeforce 149D Coloring Brackets 区间DP

    题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...

  5. Codeforces 149D Coloring Brackets(树型DP)

    题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...

  6. CodeForces 149D Coloring Brackets

    Coloring Brackets time limit per test: 2 seconds memory limit per test: 256 megabytes input: standar ...

  7. CodeForces 149D Coloring Brackets (区间DP)

    题意: 给一个合法的括号序列,仅含()这两种.现在要为每对括号中的其中一个括号上色,有两种可选:蓝or红.要求不能有两个同颜色的括号相邻,问有多少种染色的方法? 思路: 这题的模拟成分比较多吧?两种颜 ...

  8. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  9. Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...

随机推荐

  1. @RequestParam,@PathVariable等注解区别

    一.@RequestParam和@PathVariable的区别 1.@RequestParam是从uri中request后面的参数串来取得参数的 2.@PathVariable是从uri模板中取得参 ...

  2. css3 animate写的超炫3D转换

    上一篇中介绍了animate的基本的属性,这一篇讲的则是关于animate以及transforms的使用 <!DOCTYPE html><html lang="en&quo ...

  3. Java基础学习分享

    一.Java介绍 Java是由原Sun公司(现已被甲骨文公司收购)于1991年开发的编程语言,初衷是为智能家电的程序设计提供一个分布式代码系统.为了使整个系统与平台无关,采用了虚拟机器码方式,虚拟机内 ...

  4. 23. Merge k Sorted Lists[H]合并k个排序链表

    题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity ...

  5. 大数据学习之路------借助HDP SANDBOX开始学习

    一开始... 一开始知道大数据这个概念的时候,只是感觉很高大上,引起了我的兴趣.当时也不知道,这个东西是做什么的,有什么用,当然现在看来也是很模糊的样子,但是的确比一开始强了不少. 所以学习的过程可能 ...

  6. 9.13[XJOI] NOIP训练32

    今日9.13 洛谷打卡:小吉(今天心情不错,决定取消密码) (日常记流水账) 上午 今天听说是鏼鏼的题目,题面非常的清真啊,也没有当初以为的爆零啊 T1 排排坐 非常非常清真的模拟或是结论题,再次将难 ...

  7. Hadoop MapReduce编程 API入门系列之二次排序(十六)

    不多说,直接上代码. -- ::, INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with pr ...

  8. Struts2的学习链接

    ---- Struts2的学习途径 (downpour) http://www.iteye.com/wiki/struts2/1306-struts2-way-of-learning ---- Str ...

  9. python课程设计笔记(四)整数、浮点数与字符串 time库

    整数类型(范围无限制) 十进制1 -1 二进制0b1 -0b1 八进制0o1 -0o1 十六进制0x1 -0x1 浮点类型(范围有限制但可忽略) 运算存在不确定尾数 :0.1+0.2!=0.3 原因: ...

  10. The AJAX response: XML, HTML, or JSON?

    shared from: http://www.quirksmode.org/blog/archives/2005/12/the_ajax_respon.html 1. 返回XML文档 对返回的XML ...