CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)
1、http://codeforces.com/problemset/problem/149/D
2、题目大意
给一个给定括号序列,给该括号上色,上色有三个要求
1、只有三种上色方案,不上色,上红色,上蓝色
2、每对括号必须只能给其中的一个上色
3、相邻的两个不能上同色,可以都不上色
求0-len-1这一区间内有多少种上色方案,很明显的区间DP
dp[l][r][i][j]表示l-r区间两端颜色分别是i,j的方案数
0代表不上色,1代表上红色,2代表上蓝色
对于l-r区间,有3种情况
1、if(l+1==r) 说明就只有一对,那么dp[l][r][0][1]=1;
dp[l][r][1][0]=1;
dp[l][r][0][2]=1;
dp[l][r][2][0]=1;
2、if(l与r是配对的)
递归(l+1,r-1)
状态转移dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod; dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod; dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
3、if(l与r不配对)
dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;
3、题目:
2 seconds
256 megabytes
standard input
standard output
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")")
brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()"
are correct bracket sequences and such sequences as ")()" and "(()" are not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.
You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
(())
12
(()())
40
()
4
Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.
The two ways of coloring shown below are incorrect.
4、AC代码:
- #include<stdio.h>
- #include<string.h>
- #include<algorithm>
- using namespace std;
- #define N 705
- #define mod 1000000007
- char s[N];
- int match[N];
- int tmp[N];
- long long dp[N][N][3][3];
//注意用longlong - void getmatch(int len)
- {
- int p=0;
- for(int i=0; i<len; i++)
- {
- if(s[i]=='(')
- tmp[p++]=i;
- else
- {
- match[i]=tmp[p-1];
- match[tmp[p-1]]=i;
- p--;
- }
- }
- }
- void dfs(int l,int r)
- {
- if(l+1==r)
- {
- dp[l][r][0][1]=1;
- dp[l][r][1][0]=1;
- dp[l][r][0][2]=1;
- dp[l][r][2][0]=1;
- return ;
- }
- if(match[l]==r)
- {
- dfs(l+1,r-1);
- for(int i=0;i<3;i++)
- {
- for(int j=0;j<3;j++)
- {
- if(j!=1)
- dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod;
- if(i!=1)
- dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
- if(j!=2)
- dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod;
- if(i!=2)
- dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
- }
- }
- return ;
- }
- else
- {
- int p=match[l];
- dfs(l,p);
- dfs(p+1,r);
- for(int i=0;i<3;i++)
- {
- for(int j=0;j<3;j++)
- {
- for(int k=0;k<3;k++)
- {
- for(int q=0;q<3;q++)
- {
- if(!((k==1 && q==1) || (k==2 && q==2)))
- dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;
- }
- }
- }
- }
- }
- }
- int main()
- {
- while(scanf("%s",s)!=EOF)
- {
- int len=strlen(s);
- getmatch(len);
- memset(dp,0,sizeof(dp));
- dfs(0,len-1);
- long long ans=0;
- for(int i=0;i<3;i++)
- {
- for(int j=0;j<3;j++)
- {
- ans=(ans+dp[0][len-1][i][j])%mod;
- }
- }
- printf("%ld\n",ans);
- }
- return 0;
- }
CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)的更多相关文章
- CF 149D Coloring Brackets 区间dp ****
给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...
- codeforces 149D Coloring Brackets (区间DP + dfs)
题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...
- CodeForces 149D Coloring Brackets 区间DP
http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...
- codeforce 149D Coloring Brackets 区间DP
题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...
- Codeforces 149D Coloring Brackets(树型DP)
题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...
- CodeForces 149D Coloring Brackets
Coloring Brackets time limit per test: 2 seconds memory limit per test: 256 megabytes input: standar ...
- CodeForces 149D Coloring Brackets (区间DP)
题意: 给一个合法的括号序列,仅含()这两种.现在要为每对括号中的其中一个括号上色,有两种可选:蓝or红.要求不能有两个同颜色的括号相邻,问有多少种染色的方法? 思路: 这题的模拟成分比较多吧?两种颜 ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP
题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...
随机推荐
- 消除ADB错误“more than one device and emulator”的方法
当我连着手机充电的时候,启动模拟器调试,运行ADB指令时,报错. C:\Users\gaojs>adb shell error: more than one device and emulato ...
- 逻辑运算0==x和x==0具体解释
看很多大牛写的程序经常看到if(0==x){运行体},而自己写的程序常用if(x==0){运行体}.刚開始的时候我还非常自信的觉得这样的表达方式是等价的,大牛们仅仅是为了显摆下与众不同的格调.当读到C ...
- win7 32位支持多大内存|win7 32位旗舰版最多能识别多少内存
win7 32位支持多大内存|win7 32位旗舰版最多能识别多少内存 内存的大小决定系统运行速度,所以不少人认为只要内存加大就行了,其实这是不对的,因为win7 32位能支持的内存大小是有限制的,并 ...
- 第6章 Spring MVC的数据转换、格式化和数据校验
使用ConversionService转换数据 <%@ page language="java" contentType="text/html; charset=U ...
- typescript 基本数据类型
1.boolen 布尔类型 let boolen1: boolen = false; 2.number 数字类型 let num1: number = 0b110;//二进制 let num2: nu ...
- 10-XML
今日知识 1. xml * 概念 * 语法 * 解析 xml概念 1. 概念:Extensible Markup Language 可扩展标记语言 * 可扩展:标签都是自定义的. <user&g ...
- php对文件/目录操作的基础知识(图解)
具体的如下图所示:
- 利用JavaScript的%读分秒
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- 【MFC】虚拟键代码
一:首先介绍键盘消息 系统消息: ALT,F1,——F24等,是由系统内部处理的,程序本身就存在,比如F1是帮助键. WM_SYSKEYDOWN WM_SYSKEYUP WM_SYSCHAR 非系统消 ...
- android黑科技系列——破解游戏之修改金币数
我们在玩游戏的时候总是会遇到一些东东需要进行购买的,但是我们可能又舍不得花钱,那么我们该怎么办呢?那就是用游戏外挂吧!我们这里说的是Android中的游戏,在网上搜索一下移动端游戏外挂,可能会找到一款 ...